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Abstract

People usually collect information to serve specific goals and
often end up with samples that are unrepresentative of the un-
derlying population. This can introduce biases on later judg-
ments that generalize from these samples. Here we show that
goals influence not only what information we collect, but also
when we decide to terminate search. Using an optimal stop-
ping analysis, we demonstrate that even when learners have no
control over the content of a sample (i.e., natural sampling),
the simple decision of when to stop sampling can yield sample
distributions that are non-representative and could potentially
bias future decision making. We test the prediction of these
theoretical analyses with two behavioral experiments.
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Introduction

Information search typically improves judgment and decision
making by reducing uncertainty about the the world. Imagine
trying to research what qualities make a good business man-
ager prior to making a hiring decision. To achieve this goal,
it might make sense to look at the characteristics of CEOs
of successful companies and find out what they have in com-
mon. In this case, your research seems to add information,
improving your ability to decide. However, no matter how
much data you collect, it would be a fallacy (and one that
people often commit) to make the inverse inference that man-
agers with those characteristics will necessarily lead compa-
nies to success (Denrell, 2003). In this case, the way in which
information is collected can strongly bias judgment and deci-
sion making.

This scenario points to a common problem we encounter
when sampling the world. In most cases, the information we
obtain is not random, but rather tailored to our specific goals.
Biases can arise when the information we collect with one
goal or objective in mind is used to make later decisions per-
taining to different goals. To give another example, imagine
that we had sampled more broadly CEOs from both success-
ful and unsuccessful companies to help answer the question
what makes companies successful. Even though that broader
sample is now more suitable to answer that question, it would
still be unhelpful for answering other questions, like whether
college dropouts do better than graduates in their subsequent
careers. In this paper, we examine the relationship between
search goals, information sampling decisions, and prediction.

Selective versus natural sampling

Examples of biased sampling such as those reviewed above
typically involve selective sampling, when learners have con-
trol over what they sample (e.g., only successful managers).
In addition to the example of conditional reasoning, selec-
tive sampling biases have also been shown when people have

to trade-off reward and information (e.g. Denrell & March,
2001; Rich & Gureckis, 2014) or when feedback is asym-
metric across different choice options (Le Mens & Denrell,
2011).

Unlike selective sampling, natural sampling refers to the
process of drawing samples directly from the generating dis-
tribution without conditioning queries on any particular as-
pects of the sample. For example, a natural sample of busi-
nesses could be obtained by randomly selecting a number of
companies that were founded in a specific year, irrespective
of their subsequent success. As noted above, natural sam-
pling is often considered a remedy for biases introduced by
selective sampling because it enables learners to “conserve
the properties of the universe” (Fiedler, 2008), such that the
distribution of the sample will mirror the distribution of the
source in an unbiased fashion.

However, even during natural sampling learners can often
make the decision when to terminate search which may in
turn be influenced by their goals (see e.g., Juni et al., in press;
Lee & Paradowski, 2007; Vul et al., 2014). Here, we will
argue that optimal goal-induced stopping decisions can lead
to potentially non-representative samples even when they are
generated by natural sampling. In particular, using an optimal
stopping analysis we show that goals can have a powerful
impact not only on the size of samples that learners collect,
but also on the content and distributional characteristics of
those samples. We then show how such samples may not
reflect the statistical properties of the original distributions
and how they could later on produce biased decisions in a
naive learner. We finally examine these model predictions
with two behavioral experiments.

An optimal stopping analysis for natural
sampling of binary outcomes

To demonstrate the impact of stopping on sample compo-
sition, consider a simple information search task in which
learners repeatedly observe binary outcomes from a distri-
bution of interest. For example, learners could be picking
either good or bad apples in order to learn something about
the quality of the tree. The tree will have some probability of
yielding good and bad apples, but learners have to rely on a
finite sample of apples to estimate this probability.

Such a binary task can be modeled as a Bernoulli process
(a coin flip essentially) with two possible outcomes (heads or
tails) with the outcome probability 6 (probability of heads).
Assume that the learner incurs a small cost ¢ for every draw
of the distribution (every coin flip). Let’s also assume that the
learner will subsequently have to answer one of the following
two questions (sampling goals).



1. Binary: Find out if 6 is greater than 0.5 (“Is the coin biased
towards heads or tails?”).

2. Estimation: Find out the value of 6 (“What is the bias of
the coin?”).

Each goal is associated with a different reward that is a
function of the true value of 0 and the participant’s estimate.
The learner’s task is to decide when to stop sampling and pro-
vide their estimate given this cost function, the current sample
(heads and tails), and the sampling cost. Assuming that there
exists a maximum number of samples that learners are al-
lowed to draw this can be framed as an finite-horizon optimal
stopping problem. At every possible state (defined by the size
of the current sample, n, and number of heads in that sample,
hy), an optimal decision maker should compare the expected
value of stopping and of continuing and choose whichever is
higher. Thus the expected value of a state, given a horizon of
a maximum of 7 flips is

V"(T) (l’l,hn) = max{vstopy Vconl} (1)
where
Vstop = Ustop ("l,hn) —nc 2)
and .
Veon: = E[V,,(+)1 (l’l + l,hn+1)] 3)

and where u,,(.) is the expected utility of the post-sampling
task, which depends on a learner’s sampling goal (see be-
low). The value of continuing to obtain another sample is
a learner’s expectation over possible future states given their
current knowledge. The probabilities in the expectation are
based on a beta distribution parameterized by the outcomes
observed so far. The value of the final state (when n =T)
is just the expected value of stopping, which, along with
the Markov property, means that this problem is solvable by
backwards induction (Ferguson, 2012).

To compute the utility of stopping under the binary goal,
note that the probability of a coin being biased towards heads
is P(6>.5) =1—1I5(a,P), where (o, B) is the cumulative
distribution function of the beta distribution with parameters
o=~h+1and B= (n—h)+ 1. Assuming that the learner
chooses heads when P(6 > .5) > 0.5 and tails otherwise, their
expected utility for stopping is

ubin = max {1 —Ios(at, B), o5 (0. B)} r 4)

where r is the reward for making a correct choice.

The expected utility from stopping under the estimation
goal requires specifying a cost function over the distance be-
tween the participant’s estimate and 6. For simplicity’s sake,
assume that the learner’s answer counts as correct whenever
their response lies within a .2 interval surrounding the true
value, and incorrect otherwise. The expected utility from
stopping under this goal is

1
Uspop = mgx{/o Beta(x; ., B)wo'g(e—x)dx} ro(5)

where wy» is a boxcar function with a .2 wide interval. By
convolving it with the posterior over 0 it can be used to find
the interval with the largest posterior density.

Predictions

To predict behavior using this model, we first need to choose
values for sampling cost, ¢, potential reward of the secondary
task, r, and the maximum number of trials (the length of the
horizon), T. To generate more realistic predictions, we ad-
ditionally assume some stochasticity in people’s choice be-
havior by using a probabilistic choice rule instead of the
max() operator in Equation (1). For example, using a soft-

max choice rule yields the following probability of stopping
exp(Vsiop/T)

EXP((VsmerVcom)/T) :

ing an additional temperature parameter, T which governs the

degree of probabilistic responding (when T = 0 it chooses the
maximum value, as T — oo it chooses randomly). In this paper
we will use the following parameter settings to derive model
predictions: T = 24,¢ = $0.03,r = $2,7 = .02. These values
were chosen for illustrative purposes and many qualitative re-
sults hold across a broader range of values (as long as the
trade-off between ¢ and r leads to stopping after a number
of samples but before the horizon is reached). The model
was used to derive predictions for the expected sample size,
stopping probabilities, and the composition of samples after

stopping.

Stopping Figure 1A shows the model’s predictions for the
learner’s decisions to stop (white) or continue (green) given
the current state (outcomes observed so far). Under the bi-
nary goal, learners’ should continue sampling if the current
sample is balanced (similar proportion of heads and tails) and
be more likely to stop when a sample is more extreme. In
contrast, the estimation goal leads to a greater probability to
continue sampling in a much broader range of states. This
is unsurprising because estimation requires a representative
sample and overall more data than binary choice. A perhaps
more surprising and subtle prediction is that the probability is
not uniform for each sample size, but shows a slight pattern of
earlier stopping for both very extreme and very balanced sam-
ples. Both patterns are caused by a learner’s expected success
at the estimation task. When samples are extreme, expected
accuracy is high and learners can stop earlier with a reason-
able chance at success. When samples are very mixed (close
to 0.5 average), a high chance of good performance would re-
quire too many costly samples, at which point stopping early
and making a best guess might have higher expected value.
Basically mixed samples tend to take too many costs samples
to resolve accurately.

From the stopping matrices in Figure 1A one can now de-
rive expected probabilities for stopping points, that is learn-
ers’ expected final state after stopping, for specific values of
0. Figure 1B shows the likelihood of different stopping points
assuming 6 = 0.5. As expected, binary learners are predicted
to end up in early extreme states (all heads or all tails) or later
mixed states, whereas estimation learners show a wider dis-

at each state, Py,p = It requires specify-



binary estimate ‘

B binary ‘ |

estimate ‘

T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
tails

Figure 1: Model Predictions. A: Probability of continuing (green)
or stopping (white) given observed data. B: Probability of having
stopped in any given state. Modeled using uniform 6.

tribution of stopping states.

Sample Size Figure 2A shows the expected distribution of
number of total samples taken, assuming learners are sam-
pling from a process with underlying 8 = 0.5. Estimation
learners are expected to collect more samples than binary
learners, who face an easier secondary task and therefore ter-
minate earlier on average.

Sample Composition The fact that stopping rules affect ex-
pected size of samples is not surprising given the different
loss functions of the two goals. A more intriguing question
is whether sampling goals also preserve the properties of the
distribution that generates each sample. To investigate this,
we will consider the proportion of heads and tails within each
sample, after repeatedly sampling and stopping under the two
goals. We expect that binary sampling would on average lead
to more unequal samples (all heads, or all tails) since its stop-
ping rule terminates early when outcomes are extreme (after
two or three heads one can be pretty confident that heads is
more common, for example) and continues when early out-
comes are mixed (after one tails and two heads a decider
might want to flip the coin at least one more time to be sure).
On the other hand the estimation condition predicts a wider
array of stopping points because the goal is to get an accurate
picture of the average outcome probability.

Figures 2B and C confirm this effect of stopping rule on
sample composition. It shows the expected frequency distri-
bution of sample averages under each sampling goal, when
the true 6 = 0.5(A) or 6 = 0.7(B). In the estimation condi-
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Figure 2: A: Distribution of sample size by condition, using uni-
form 0. B and C: Predicted distribution of sample averages, using
6=0.5,and 6 =0.7.

tion, sample means fall around the expected value of the dis-
tribution, whereas the binary condition leads to many samples
with only one type of outcome (all heads or all tails). Note
that these more extreme samples tend to be small (that’s when
learners terminate early), but they still mostly contain more
than one observation, which can be seen from Figure 1A.
Thus, the difference in sample mean distributions between
the two goals is not just due to the fact that the binary con-
dition leads to samples of size 1 which necessarily have an
average of O or 1.

Summary This analysis shows how sampling goals can in-
fluence on learners’ expected stopping strategies even in a
very simple binary sampling task. Furthermore, even though
the model gives learners no influence on what to sample and
it assumes they are choosing optimally, the resulting distri-
bution of samples is not necessarily representative of the un-
derlying generating probabilities. Instead, sampling with the
binary goal leads to far more samples with extreme averages
than the estimation goal, which generates more representative
samples.

This illustrates that even in natural sampling tasks, in
which samples generally “conserve the properties of the uni-
verse” Fiedler (2008) optimal stopping rules can distort the
experienced data depending on the learner’s goal during the
sampling. In other words, even the minimal decision of
when to stop can introduce systematic discrepancies between
a sample and the population distribution.

Experiments

These theoretical results yield a number of interesting em-
pirical questions, which will be addressed with two ex-
periments. First, the model uses a relatively sophisticated
forward-looking, optimal decision-making process to gov-
ern people’s stopping decisions. The behavioral patterns in
Figure 1 require not only that learners can assess the cost-
accuracy trade-off and adjust the number of samples accord-
ingly. They need to also be able to assess the expected perfor-
mance given the current sample content. In the following two
experiments we will therefore examine to what degree partic-
ipants are actually engaging in such forward looking behavior
when deciding to terminate or continue sampling.

Both experiments will also examine how goals affect sam-
ple composition, compared to the predictions of the model. A



key intention of the modeling effort above was to show that
distributions of sample means differ depending on the goal,
which suggests that even natural sampling does not preserve
population characteristics in a straightforward manner.

Another question, albeit one that is more difficult to an-
swer, is whether people’s judgments about the distribution
that generates the samples are affected by the different sam-
pling strategies. For example, since binary sampling, accord-
ing to the model, should produce more extreme samples, does
this lead people to expect more extreme outcomes? Experi-
ment 2 starts to address this question and yields some prelim-
inary results.

Experiment 1

Experiment 1 manipulated sampling goals in a simple re-
peated Bernoulli sampling task that shared all the character-
istics of the task described in the modeling section. The sam-
pling goal was manipulated between participants who either
had to estimate the overall value of 0 (estimation condition)
or decide whether 0 was greater or lower than 0.5 (binary
condition).

We predicted that sampling goals would affect both the
number of samples collected on average (higher for the es-
timation vs. binary goal), and the relationship between stop-
ping points and current sample composition. As outlined in
the previous section, we expected participants engaged in bi-
nary sampling to be more likely to stop early when strong
evidence is encountered (average closer to O or 1) and more
likely to continue when evidence is mixed (average closer to
0.5).

Participants 276 participants were recruited via Amazon
Mechanical Turk. They were paid $2 for participating with an
option to win a bonus of up to another $2 (explained below).

Stimuli Participants were told that they were repeatedly
drawing cards from 50 different card decks consisting of 200
cards each. Cards could be either red or blue, and the distribu-
tion of red and blue cards in each deck was determined semi-
uniformly (using an evenly-spaced distribution of Bernoulli
probabilities 8 that were then used to randomly draw the cards
for each deck). Participants were explicitly told to assume a
uniform distribution of numbers of red and blue cards in each
deck, as well as being told that the order of cards in each deck
was completely random (“well shuffled”).

Procedure For each card deck, participants could repeat-
edly (up to 24 times) turn over cards using a button press to
reveal their color. A counter on the screen would tell how
much of potential bonus remained after each sample (which
cost $0.05). For each card deck, the potential bonus started
at $2. At any point participants could also decide to move
on to the secondary task (binary choice or estimation) via a
different button. In the binary task, participants would then
make a two alternative forced choice decision of whether they
thought there were more red or more blue cards in the deck.
In the estimation task they gave an exact estimate using a bar
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Figure 3: A: Histogram of sample sizes in Experiment 1.
B:Distribution of sample averages in Experiment 1.

slider whose handle had two lines that indicated the .2 interval
within which their response would be counted as correct. Af-
ter giving their estimate, all 200 cards of the card deck were
revealed and participants received feedback on their choice or
estimate. If their estimate was correct, their potential bonus
was recorded as the bonus that remained after the sampling
phase, otherwise the it was recorded as $0. At the end of the
task, one card deck was chosen at random and participants
were actually paid the bonus earned on that deck.

Results & Discussion To recap, our two main predictions
motivated by the modeling were that participants in the es-
timation conditions would on average collect larger sam-
ples, and that participants in the binary conditions would be
strongly influenced by the composition of the current sample
when deciding whether to stop or to continue sampling. Fig-
ure 3A shows the distribution of sample sizes by condition.
As expected (compared to model predictions in Figure 2A),
participants in the estimation group took larger samples than
participants in the binary group (#(211) = —11.18, p < 0.01),
suggesting that people were aware of the trade-off between
sampling cost and accuracy and were willing to incur higher
cost (more samples) in the more difficult task. There were
also visible spikes for certain sample sizes (8, 10, and 12) in
the estimation condition, suggesting that perhaps these were
preferred, salient stopping points for a range of participants
(cards on the screen were aligned in columns of four, so
spikes at 8 and 12 may be the result of some aesthetically
inspired fixed-sample-size stopping rule).

Figure 4 shows the proportion of times participants ended
up in each state after terminating search. There was a clear
difference between the stopping patterns of the two groups.
Participants in the binary group were more likely to stop in
early extreme states, but continued sampling if early evidence
was mixed. Participants in the estimation group, on the other
hand, showed no discernable stopping pattern based on cur-
rent sample composition. For a given sample size, there ap-
peared to be fairly equal stopping probability across different
proportions of red/blue cards. Also, the previously mentioned
average preference for certain sample sizes is reflected in di-
agonal “ridges” in the estimation goal data. What we did not
observe were the earlier stopping patterns for very mixed or
very extreme samples, which were predicted by the model.
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Figure 4: Stopping probabilities (dark means high) by sampling
goal in Experiment 1

Possibly participants were unaware of the differences in un-
certainty about the true average that emerge as a consequence
of the sample composition.

Finally, we also examined the sample composition result-
ing from these stopping rule differences. Figure 3B shows
the distribution of sample averages by condition. The binary
sampling group showed a much larger proportion of extreme
samples (all red/blue) compared to the estimation condition.
In summary, people’s stopping decisions lead to differences
in the resulting sample content in a manner that is qualita-
tively consistent with the model predictions.

Experiment 2

Experiment 1 established that people adapt their stopping rule
to different sampling goals in a way that is broadly consistent
with the predictions of our optimal stopping analysis. How-
ever collecting a sample is usually not the end goal of learn-
ing. Instead learners use a sample to enable predictions about
more general properties of the world. For example, people
might listen to a few songs by a band then attempt to gen-
eralize from those song to the entire catalog. Experiment 2
was designed to explore how goal-induced stopping rule dif-
ferences might affect people’s subsequent judgments of more
general population parameters.

A critical challenge was ensuring that participants were
motivated to learn more general properties from the samples
they collected. To that end, we altered the Experiment 1 de-
sign by grouping samples under two different generative pro-
cesses (specifically two different schoolteachers who had the
ability to influence the test scores of students in their class).
The intention was to encourage participants to form summary
representations of these parameters based on the samples col-
lected for each. By varying the average outcome probabili-
ties of these two groups/parameters (one high, one low), we
would then be able to compare the potential impact of sam-
pling goals on the estimates of each group’s average. We ex-
pected binary samplers to be exposed to a greater difference
between outcome probabilities due to a stopping rule that
leads to more extreme outcomes and wanted to know if this
would bias their population estimates to also be more more

extreme (even higher, and even lower) as a consequence.

Participants 58 participants were recruited via Amazon
Mechanical Turk and paid $2 for participation (plus bonus).

Stimuli To encourage participants to form summary
representations of two separate distributions a cover story
asked them to repeatedly sample binary results (correct or
incorrect test scores) from a set of high school students,
who were each taught by one of two teachers (teacher A
or teacher B). That is, rather than randomly and uniformly
drawing values for 0 for each student (as in Experiment
1), outcome probabilities were now drawn from one of two
hierarchical distributions. The mean accuracy of students
from each teacher differed, such that one teacher yielded a
higher average (upign = 0.7) of correct test scores than the
other (yy,,, = 0.3). Individual students’ outcome probabilities
were distributed as 8 ~ Beta(3u;,3(1 — ), depending on
a student’s teacher type, t € {high,low}. Participants were
each given different random draws from this distribution.

Procedure The main part of the experiment was similar to
that of the model and previous experiment. Participants re-
peatedly sampled 100 students’ test answers (correct or in-
correct), while losing $0.05 per question from a potential $2
bonus per student. Each student was presented along with
their respective teacher, which alternated between teacher A
and B. Participants were again assigned to a binary choice or
estimation condition, but unlike in the previous experiment
they did not receive feedback on the true distribution for every
student. After sampling 50 students per teacher, participants
also rated the average quality of each teacher’s students (us-
ing a slider between 0% and 100% correct). Again, they were
paid a bonus based on one randomly chosen student from the
sampling task.
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Figure 5: A: Number of samples collected in Experiment 2. B:
Difference between mean of the sampling means, and mean of all
samples by condition and teacher type (High or Low).

Results & Discussion Figure SA shows the distribution of
sample size by condition and Figure 6 depicts participants’
stopping probabilities by state. Despite substantial changes
compared to Experiment 1 (addition of teachers, two differ-
ent outcome distributions, omission of feedback) the results
are qualitatively similar. Again, binary learners took smaller
samples on average and were more likely to stop given highly
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Figure 6: Stopping probabilities (dark means high) by sampling
goal in Experiment 2.

unbalanced samples (all correct or all incorrect).

Next, we considered the impact of stopping on the evidence
collected for each of the teachers. Because each participant
saw a different sequence of outcomes and the resulting dis-
tribution of samples varied as a consequence, we developed
the following measure of a participants’ potential for being
biased given the data they saw: For each participant, we com-
puted the difference between the average sample mean for
each teacher and the overall teacher average irrespective of
the sample boundaries (i.e. treating all students as one sam-
ple). This difference is 0 when a participant always takes
samples of the same size, but may diverge when sample sizes
are uneven, particularly when sample size and sample mean
are non-independent, as we expect to happen under binary
sampling. Figure 5B shows this difference by teacher and
condition. As expected, in the binary condition, the average
sample mean was more extreme (higher for the good teacher,
lower for the bad teacher) than the overall average, compared
to the estimation condition, (significant condition and teacher
type interaction, #(98) = 5.62, p < 0.01), indicating again that
stopping rules affected the sample distribution.

Next, we tried to investigate the impact of this difference
on people’s subsequent judgments of the teachers. To do so,
we regressed participants’ posterior estimates of the teacher
mean (one estimates per participant per teacher) on their over-
all teacher mean and the difference between overall mean
and average sample mean (from Figure 5B). If the latter had
any additional positive effect of peoples estimates beyond the
overall mean, this would indicate that participants were not
correcting for the unequal sample sizes that introduced this
difference. However, we failed to find a significant positive
effect of the difference, #(99) = 1.627, p = 0.11. Due to con-
siderable variation in the actual outcomes observed by each
participant (all received different sequences) and the high
variability of theses posterior estimates, it may be that we
lacked sufficient statistical power to detect this effect. We
are currently working towards an improved design of this
study that reduces variance in people’s posterior estimates of
teacher quality and their sample sample composition.

Discussion

In this paper, we presented a theoretical analysis showing
how sampling goals can have a profound impact on people’s
stopping strategies even under natural sampling. Crucially,
our results go beyond showing a difference in the amount
of evidence collected, but demonstrate that goals also affect
also the composition and statistical properties of samples.
This demonstrates that natural sampling does not necessarily
produce samples that mirror the statistical properties of the
environment. Instead, just the simple decision of when to
stop sampling can lead people to collect samples with vastly
different distributional characteristics depending on their
goal. While Experiment 2 did not show a robust effect of this
non-representative sampling on more general predictions, it
is an interesting question if people can take into account the
process by which samples were gathered and perform the
necessary correction to remove possible biases. Prior work
on sampling and estimating binary outcomes suggests that
this might be difficult for people (Fiedler, 2008; Griffin &
Tversky, 1992). If this turns out to be more generally true, it
suggest that simply deciding when to stop sampling informa-
tion from a natural process can strongly bias judgement.
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