Modeling active learning decisions during causal learning
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Abstract

An important type of decision making concerns how people choose to gather information which reduces their uncer-
tainty about the world. For example, when learning about a novel piece of technology, like a smartphone, people often
actively intervene on various aspects in order to better understand the function of the system. Interventions allow us to
tell apart causal structures that are indistinguishable through observation, but only if the right variables are intervened
on. Normative models of decision making developed in the machine learning literature specify a process of comparing
hypotheses to identify those interventions that will allow a learner to distinguish between them. An experiment that
asked subjects to decide between two causal hypotheses found that while they often chose useful interventions, they fre-
quently perform interventions whose expected effects were typical of one causal structure but that did not always allow
the two structures to be distinguished. We interpret this tendency as a type of positive-test-strategy with a preference for
outcomes that are representative of a single causal structure.

Keywords: active learning; causal learning; interventions; information search



Introduction

To learn about causal relationships in the world, we often cannot rely on passive observation (i.e., unsupervised learning)
alone. In order to understand why certain variables covary, we need the ability to actively change them and observe the
effects of these changes. Active interventions are thus a crucial instrument for learning what causal structures underlie
patterns of covariation in the world. There exists considerable evidence in psychology that people understand how
causal systems behave in response to interventions (Waldmann & Hagmayer, 2005) and that they can use the information
obtained from interventions to improve their inferences (Lagnado & Sloman, 2006).

It is still an open question, however, what strategies people use to plan their interventions with the goal of learning, that
is how they decide which information would be useful for learning how a causal system works. A medical researcher,
for example, needs to decide which of a patient’s symptoms to treat in order to find out what illness may have caused
their particular pattern of symptoms. Similarly, a scientist has to choose experimental manipulations that will tell apart
different scientific hypotheses.

Here, we will examine two broad categories of models that can be used to explain people’s decision-making processes
during intervention-based causal learning. Then, in a behavioral experiment with human participants, we evaluate
which class of models provides the best account of our observed choice data. The following section will give a short
overview of these two key modeling approaches we have explored.

Comparative strategies

One strategy that might underlie people’s causal intervention decisions is based on a rational analysis of the structure
learning task. According to this rational perspective, people should choose interventions that will be useful for dis-
tinguishing alternative hypotheses. There exists a large group of optimal models, or sampling norms, that have been
proposed as methods for achieving this goal (Nelson, 2005). These models share the assumption that people anticipate
possible outcomes of their search behavior (i.e., of their interventions), and evaluate how useful these outcomes will be
for differentiating hypotheses. Importantly, they all rely on a process of comparison, because they only value information
that can help tell apart different hypotheses.

One sampling norm that captures the goal of causal structure learning particularly well is the Information Gain (IG)
model of hypothesis testing. The model values observations based on their potential to reduce a learner’s uncertainty
about which out of a number of possible hypotheses is might underlie some observed data. It was first applied to causal
interventions in the machine-learning literature (Murphy, 2001; Tong & Koller, 2001). However, it has also been proposed
as a mechanism that guides people’s intervention choices (Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).

Non-comparative strategies

In contrast to such comparative models of intervention choice, there also exists a literature within the psychology litera-
ture which shows that people seek information that only pertains to one specific hypothesis at a time. For example, it has
been shown in rule-learning tasks that behavior often follows a positive-test-strategy (PTS) or positivity bias. This bias is
a preference for seeking affirming information given a currently held hypothesis (e.g., Klayman & Ha, 1989), rather than
testing whether the rule does not hold for counterexamples.

In the causal domain, PTS could manifest in a preference to intervene on variables (nodes in a causal graph), with high
centrality (e.g., Ahn, Kim, Lassaline, & Dennis, 2000) within one candidate causal structure, irrespective of other hypothe-
ses. Nodes are central if they have a large number of direct or indirect descendant links which could be activated through
an intervention and thus count as positive evidence for a given structure. This metric can be completely at odds with a
comparative strategy such as IG, because the outcomes of interventions based on this strategy may not be at all helpful
for distinguishing one hypothesis from its alternatives.

Goals of this study
The aim of our study is to evaluate the degree to which people engage in comparative or non-comparative search behav-

ior during causal structure learning. To answer this question, we conducted a simple intervention experiment that was
set up in a slightly biased way to facilitate the use of a comparative strategy.

Methods

In this experiment, participants were repeatedly asked to make interventions on three-node causal systems to distinguish
between two causal hypotheses.
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Figure 1: Intervention phase of the experiment which was repeated for each of the 27 structure comparisons. The true underlying
causal graph was selected randomly. Participants could make as many interventions as they wished, but lost $0.10 of a potential
bonus payment with each intervention.

Participants. We recruited one hundred and five participants (51 women and 55 men) aged 18 to 64 (M = 34.3 years, SD
=12) via Amazon Mechanical Turk. All participants were paid $2 for participation with the option of earning another $1
bonus for their performance in the task (bonus structure is explained below).

Stimuli and Materials. All possible three-node structures with one or two links were used in the experiment. They
were exhaustively paired with each other to yield 27 unique structure pairs, which acted as hypotheses. All links had
causal strengths of 0.8 and there were no background causes that could turn on nodes without any causal impact from
another node or an intervention from the outside. In the experiment, causal graphs were described as computer chips
with multiple components (nodes), which could either be on or off as indicated by their color (red or green). Hypotheses
(pairs of causal graphs) were illustrated by arrow diagrams that show their respective causal links. During the task, the
order of the nodes was randomized on the screen so that each node could appear in one of five different locations.

Procedure. w Participants played a game which had them imagine they were working in a computer chip factory in
which an accident had caused some of the chips to be mixed up. They were instructed to help identify the types of
individual chips by testing them through interventions. After an extensive instruction phase, participants tested 27 chips
corresponding to all 27 causal structure comparisons. They were told that each chip could be described by one of two
different chip types (hypotheses), which were presented to them with arrow diagrams. The diagrams remained at the
top of the screen the entire time that a chip was tested to facilitate comparison between them. For each chip comparison,
one of the hypotheses was randomly selected to be the true underlying structure of the test chip.

Figure 1 illustrates the intervention phase of the experiment. Interventions could be made by clicking on one of the
nodes, which could then activate other nodes on the chip. Activated nodes changed their color (from red to green).
Participants could make as many interventions as they wished, and were allowed to proceed any time when they felt
they had figured out the chip type. They then indicated which of the two hypotheses was most likely given the results
of their interventions.

Participants could receive a bonus of up to $1 based on one randomly chosen comparison at the end of the experiment.
The bonus was only paid if they chose the correct structure at the end of that particular comparison, and it was further
reduced by $0.10 for every intervention they had made. Thus, participants were incentivized to respond accurately and
to use a minimal number of interventions.

Results

Model comparison.

To examine the degree to which participants rely on a comparative strategy when choosing their interventions, we cal-
culated the expected information gain for every intervention in all 27 structure comparisons. We fit these predictions
of the IG model to participants’ choices using a probabilistic choice rule with a temperature scaling parameter that was
estimated for each individual participant. We found that IG predicted choices well on some problem types but also con-
siderably deviated from them on others. To make sure that these deviations were not due to just random variation, we
compared bootstrapped samples from the choice data to samples from the model’s posterior, separately for each problem
type (plots are not shown in the interest of space). This gave us an indication of the expected uncertainty around our
measurement of people’s preferences, as well as the expected distribution of choices that a population of IG users would
produce. Even after accounting for uncertainty in this way, model predictions from IG still deviated from the empirical



data because the two sets of samples overlapped only barely or not at all on certain problem types. We conducted the
same analysis using the PTS model and found similar results (good fit on some, but not all problem types).

Next, we investigated whether a propensity for non-
comparative hypothesis testing, like PTS, could explain
why IG did not match people’s choices in some problems. To .
do so, we derived a measure of agreement between the two -407 . .
models, by calculating the rank correlation of their predictions
for the preference over the three nodes in a given problem type.
Figure 2 shows how this measure of model agreement relates
to the goodness of fit of the IG model, in each problem type.
Indeed, we find that the IG model had a lower likelihood in
precisely those problem types in which its predictions conflicted
with the PTS model. In addition to the bootstrapping analyses, P s A os -
this provides another reason to believe that deviations from IG Rank Correlation: IG and PTS
on some problem types are not just due to random variation

in the data. Instead, the model might particularly struggle on Figure 2: Log likelihood of IG model and agreement of IG
problems where other aspects of the task, like non-comparative and PTS (kendall’s tau rank correlation), by problem type.
considerations, enter people’s decision process.
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Finally, we fit a combined model that took a weighted combination of IG and PTS scores before applying the probabilistic
choice rule. Again, weights were estimated separately for each participant. When comparing posterior samples of this
combined model to bootstrapped samples of the data, we found that it made credible predictions on all 27 structure
comparisons.

Reaction times.

If, as the combined model suggests, participants are influenced
by both comparative and non-comparative aspects of the task,
we expected that it should be particularly difficult to choose
an intervention when IG and PTS make divergent predictions
about which node to choose. We therefore looked at the time

it took participants to make an intervention, separately for each 30007 .
problem type and again depending on the agreement between
IG and PTS. As Figure 3 shows, people did take significantly -1.0
longer to choose an intervention in problems with low model

agreement, r(25) = —0.58, p < 0.005. This finding confirms

that comparative and non-comparative components may both Figure 3: Median response time before making an interven-
play a role in people’s intervention decisions and, when in con- tion and agreement of IG and PTS (kendall’s tau rank corre-
flict, can make certain problems more difficult than others. lation), by problem type.
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Individual differences

Using the combined model, we found considerable variation in
the relative weights that participants place on the two strate-
gies examined here (IG and PTS). Thus, we were interested in . °
finding out if the individual tendency to use either IG or PTS .

manifested in other aspects of participants’ behavior in the task, 9000
besides their intervention choices. To do so, we considered the
difference in log likelihood of the separate IG and PTS mod- -
els for each participant as a proxy for their tendency of making
comparison-based interventions. We considered three indepen- 30004
dent variables in relation to this measure:
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First, we predicted that participants who are more prone to us-
ing IG, which is a computationally more intensive strategy than
PTS, would take longer to decide which intervention to make.
As predicted, we find that participants whose behavior is better
accounted for by the IG model compared to PTS take signifi-
cantly longer to choose interventions, 7(103) = 0.21, p = 0.03.

Figure 4: Response time and difference in model fit between
IG and PTS, by participant.

We also expected that IG users would be more likely to choose the correct causal structure at the end of the intervention
phase. This is plausible because using IG leads to outcomes that will allow the learner to actually discriminate between



graphs. It is also possible that if a non-comparative strategy is used, learners are more likely to falsely rely on outcomes
that appear to provide evidence for one of the graphs, but in fact do not exclude the possibility that the alternative is true.
As expected, we found a positive relationship between the
degree to which participants’ choices were better fit by the

IG model and their average accuracy across all comparisons, 10 T I T —
r(103) = 0.28, p < 0.01, as shown in Figure 5. . B AR R et

Finally, we also expected comparative hypothesis testers toneed %87 2. . :

fewer interventions overall before deciding which structure is  § . T

correct. Again, one reason for this is that they should have re- ~ §°6- P

ceived better data on average to help them actually discriminate .’

the two graphs. Another reason is that positive testers might 044

be tempted to want to recreate all positive effects of one of the | : |
structures and thus require more interventions to achieve this -10 G Fit- TS Fit 10

goal. As figure 6 shows, individuals better fit by IG made fewer
interventions than participants who relied more heavily on the

non-comparative strategy, 7(103) = —0.35, p < 0.001. Figure 5: Accuracy and difference in model fit between IG

and PTS, by participant.
In sum, the combined model of IG and PTS not only provides
a better fit to people’s choices, but it also has some interesting
behavioral implications that we could observe in our data.
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Discussion

In contrast to predictions of the rational approach to causal in-
formation search, we find that people’s intervention choices not
always aim at differentiating causal hypotheses. Instead, par-
ticipants’ choices in a simple causal intervention task were best
accounted for by a model that also included preferences based ’ IG Fit - PTS Fit

on graph-specific, non-comparative features of a given problem.

Specifically, participants preferred intervening on causal nodes  gjo;;re 6: Number of interventions and difference in model
that had the potential to trigger a large proportion of all the ef- it between IG and PTS, by participant.

fects associated with one of the hypothesized graphs. We inter-

pret this preference as a type of positive-test-strategy, which favors seeking information that will lead to positive out-
comes that should be expected if a given graph was true. This finding is at odds with a rational model that is purely based
on seeking interventions that lead to surprising outcomes, like the IG model. In reality, it looks like people’s decisions
are guided by both comparative and non-comparative strategies during intervention-based causal structure learning.

Average no. of interventions
N w
1 1

Going forward, we are interested in testing whether people’s reliance on non-comparative strategies can be influenced
by the task environment. In our current experiment, using a non-comparative strategy still led to outcomes that would
enable participants to make correct graph choices, most of the time. However, if graph comparisons were designed so
that non-comparative strategies would not aid learning at all, it is possible that participants would switch to a more
comparison driven approach.
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