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ABSTRACT—Just as neurons interconnect in networks that

create structured thoughts beyond the ken of any individ-

ual neuron, so people spontaneously organize themselves

into groups to create emergent organizations that no

individual may intend, comprehend, or even perceive.

Recent technological advances have provided us with

unprecedented opportunities for conducting controlled

laboratory experiments on human collective behavior. We

describe two experimental paradigms in which we attempt

to build predictive bridges between the beliefs, goals, and

cognitive capacities of individuals and patterns of behavior

at the group level, showing how the members of a group

dynamically allocate themselves to resources and how

innovations diffuse through a social network. Agent-based

computational models have provided useful explanatory

and predictive accounts. Together, the models and exper-

iments point to tradeoffs between exploration and exploi-

tation—that is, compromises between individuals using

their own innovations and using innovations obtained from

their peers—and the emergence of group-level organiza-

tions such as population waves, bandwagon effects, and

spontaneous specialization.
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It is natural for psychologists to focus on the behavior of single

individuals, because introspection provides people with moti-

vation and perspective at this level. However, in a literal sense,

we are all participating in entities greater than ourselves. Self-

organized collectives of people create emergent group-level

patterns that are rarely understood or intended by any individ-

ual. A business has a style and ethos that transcends its em-

ployees. A culture has a nature, integrity, and systematicity that

transcends its inhabitants while still being grounded by their

interactions (Atran, Medin, & Ross, 2005). Social phenomena

such as the spread of gossip, the World-Wide Web, the popularity

of cultural icons, legal systems, and scientific establishments all

take on a life of their own, complete with their own self-organized

divisions of labor and specialization, dynamics, feedback loops,

growth, and adaptations.

A considerable amount of early work on group behavior from

social psychology focused on interpersonal relations and the

attributes that characterize good leaders or work teams. How-

ever, the social patterns that people form are often organized

without explicit leaders, chains of command, or fixed commu-

nication networks (Ball, 2004). Examples of such spontaneously

emerging social patterns include book recommendations on

Amazon.com (which evolve based upon similar readers’ buying

habits), fans at a sport stadium, grassroots political movements,

the development of a fully cross-indexed and intricately orga-

nized online encyclopedia that any person can edit (www.

wikipedia.org), and an online venue for media sharing that is

freely accessible to both providers and consumers yet still shows

striking trends of rich-get-richer popularity (www.youtube.com).

In December of 2006, Time magazine named ‘‘You’’ as Person of

the Year in recognition of the power and sophistication of these

grass-roots, decentralized communities.

To understand the structure and dynamics of human collec-

tives like these, we have developed Internet-based experimental

platforms that allow groups of 20 to 200 people to interact with

each other in real time on networked computers. The experi-

ments use virtual environments in which participants can see the

moment-to-moment actions of their peers and immediately re-

spond to their environment by making responses of their own. To

understand the results of these experiments, we have developed

computational models. Several models of group behavior exist,

but rarely are these models tested against detailed data sets

obtained from controlled laboratory settings. Often there is a

disconcerting mismatch between the simplicity of formal models

and the complexities of real-world situations. Our strategy for

bridging the gap between computational models and group-

behavior phenomena is to create relatively simple laboratory

situations involving groups of people interacting in idealized
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environments according to easily stated ‘‘game rules.’’ We ad-

mittedly sacrifice some external validity in creating idealized

experimental scenarios, but this loss is offset by the nearly exact

correspondence of the assumptions underlying our psychologi-

cal experiments to those of the computational models; this allows

the models to be aptly applied without sacrificing their concise

explanatory value and genuine predictiveness. In what follows,

we focus on two scenarios that capture ubiquitous group pat-

terns: the competition of agents for resources and the dissemi-

nation of innovations in social networks.

THE COMPETITIVE SEARCH FOR RESOURCES

A problem faced by all mobile organisms is how to search their

environment for resources. Animals forage their environment for

food, Web-users surf the Internet for desired data, and industries

mine the land for valuable minerals. When an organism forages

in an environment that consists, in part, of other organisms that

are also foraging, unique complexities arise. The resources

available to each individual are affected not just by that indi-

vidual’s behavior but also by the simultaneous actions of other

individuals.

We have been interested in experimentally exploring how

human foragers allocate themselves to resources and the time

course by which that allocation is achieved. Through the Internet

(available to the public at http://groups.psych.indiana.edu/),

eight groups of 12 to 28 (average 5 21) participants competed for

food tokens deposited over time in a virtual environment con-

sisting of an 80� 80 grid of squares. In Goldstone and Ashpole

(2004), a virtual environment was created with two resource

pools into which valued food tokens could be deposited with

different rates of replenishment. Each pool consisted of a com-

pact region of many squares. The participants’ task was to obtain

as many resource tokens as possible during the course of a 270-

second experiment. A participant obtained a token by being the

first to move on top of it. Participants moved square-by-square by

pressing arrow keys on their computer keyboard.

Resources were divided between two resource pools in various

ways. For example, in one condition, food tokens were split

evenly (50/50) between the two pools; other conditions had a 65/

35 or 80/20 split. The location of the food within a pool followed a

normal (Gaussian) distribution with a mean at the center of the

pool and a standard deviation of five horizontal and vertical

positions. The locations of the pools were randomized under the

constraint that the distance between pools was kept approxi-

mately constant. One piece of food was delivered to one of the

resource pools every 4/N seconds, where N is the number of

participants. In our ‘‘visible’’ condition, each participant could

see each other and the entire food distribution. In our ‘‘invisible’’

condition, they could not see the other participants, and so they

gradually acquired knowledge of the resource distributions by

virtue of their histories of getting food from each location.

The dynamics of the distribution of agents to resources in each

condition are shown in Figure 1, broken down by the three types

of resource distribution. Although fast adaptation to the food

distributions takes place, the asymptotic distribution of agents

systematically undermatches the optimal distribution of agents

to resource pools. By undermatching, we mean a distribution of

agents that is less uneven than the distribution of resources. For

example, in the 65/35 distribution, the 65% pool only attracts an

average of 60.6% of the agents. If we were efficiency consultants,

we would recommend that some foragers in the less productive

pool move to the more productive pool, as the resources there are

being relatively underutilized despite the larger crowd. This

finding of undermatching has been obtained with other animal

groups, including cichlid fish, mallard ducks, and mites (Ken-

nedy & Gray, 1993). We have also observed this undermatching

in collectives of citizens of the virtual world Second Life (http://

secondlife.com/), who were invited to forage for pieces of the

world’s currency that we randomly placed in two regions. This

undermatching may also explain real-world human foraging

behavior, such as the documented inefficiency in sperm whalers’

hunting for whales near the Galapagos Islands in the early 19th

century (Whitehead & Hope, 1991).

Our results also reveal periodic fluctuations in resource use. A

Fourier analysis was applied to the populations at the resource

pools over time to reveal cyclic oscillations of migration. Fourier

transformations translate a time-varying signal into a set of si-

nusoidal components. Each sinusoidal component is charac-

terized by a frequency. The power of a component indicates the

strength of a periodic response at that frequency. This analysis

revealed significantly greater power in the low-frequency

spectra for invisible conditions than for visible conditions. For

all three invisible conditions, the peak power was at approxi-

mately .02 cycles/second and was particularly high for the most

uneven, 80/20 distribution. This means that in the invisible

conditions, agents collectively caused waves of relatively dense

crowding at one pool that repeated about once every 50 seconds.

There was no evidence for population cycles in the visible

conditions, presumably because a person who was tempted to

leave their dissatisfying pool for greener pastures would be

dissuaded if they saw several other people with the same idea

already leaving their pool. However, in invisible conditions,

agents may become dissatisfied with a pool populated with many

other agents, but as they leave such a pool they would not be

aware that other agents are also leaving. Thus, the ironic con-

sequence of people’s shared desire to avoid crowds is the

emergence of migratory crowds!

In a second experiment (Goldstone, Ashpole, & Roberts,

2005), we ran groups of participants in conditions where food

resources, but not fellow foragers, were visible, and vice versa. If

people acted like buzzards, using the presence of peers as an

indicator of possible food sources, then the presence of a rela-

tively large number of participants at the richer pool would be

expected to draw still more participants to the pool. In fact, when
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agents can see each other but not the overall pattern of food, their

distribution is not uneven enough (e.g., only 62% of the par-

ticipants were at the 65% pool), but when agents can see food

resources but not each other, then their distribution is more

uneven than the resource distribution (e.g., 73% of the partici-

pants were at the 65% pool). This suggests that people are more

like some aphid species than like buzzards, avoiding sites that

already have a large crowd of other members of their own spe-

cies. By this account, overmatching occurred because partici-

pants were attracted to the rich, productive pools, and were not

dissuaded from approaching these pools by the presence of other

participants (because those others were invisible).

To gain greater insight into our results, we chose to model them

using an Agent-Based Model. This class of models builds social

structures ‘‘from the bottom up,’’ by populating the simulation

with many individual virtual agents and allowing emergent or-

ganizations to form out of the operation of rules that govern

interactions among these agents and their environment. Our

EPICURE model (Roberts & Goldstone, 2006, available as an

interactive simulation at http://cognitrn.psych.indiana.edu/

Epicure.html) populates a world with agents that probabilistic-

ally decide from moment to moment what spatial grid location

they will approach based on the locations’ values. The first factor

that affects a location’s value is its distance: The closer a location

is, the more likely it is to be selected as a target destination.

Second, once a location has been selected as a target, its value is

increased so that it will tend to be selected as a target at the next

moment too. This is a way of incorporating consistency in target

choices over time. For agents who can see all of the other agents

and food, a third factor is that the value of a location increases as

the density of food in its vicinity increases, and a fourth one is

that the location’s value decreases as the density of other agents

increases. In the invisible condition, agents must gradually ac-

cumulate a personal history of where they have found food. Every

time food is found at a location, the location’s value increases,

and this increase diffuses to the nearby locations.

These simple assumptions allowed EPICURE to account for

the empirically observed pattern of overmatching and under-

matching for the four visibility conditions in which foragers and

food could independently be visible or invisible. Why does

EPICURE predict undermatching? The critical notion is spatial

‘‘turfs.’’ A single agent can efficiently patrol a compact region of

about 10 squares, roughly independent of the food productivity.

Two pools that differ in their productivity both have the same
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Fig. 1. Changes in the number of people at each of two resource pools across 270-second foraging experiments (Goldstone &
Ashpole, 2004). Resources were distributed evenly (50/50) or with unequal (65/35 or 80/20) distributions. Participants either
were shown the positions of other participants and resources (visible) or not (invisible). The actual distributions of resources
(indicated by the straight horizontal lines) are more extreme than the distributions of participants to these resources.
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spatial extent and variance, and so can support agents in num-

bers that are more similar than predicted by the pools’ produc-

tivities alone. EPICURE also predicted our observed population

waves in the invisible conditions, as well as other counterintu-

itive results found in animal foraging, such as that increasing the

distance between two resource pools—and hence increasing

travel cost—should decrease undermatching (Baum & Kraft,

1998). One of the best ways to evaluate a model is to see whether

behaviors that are not explicitly forced by the rules arise—in

other words, are we getting out more than we knew we were

putting in the model? By this measure, the model does a good job

of explaining collective foraging behavior. Although under-

matching and population waves were not explicitly stipulated

by the model’s assumptions, these behaviors emerge because of

agents’ tendencies to avoid each other but to be attracted by the

same resources.

DISSEMINATING INNOVATIONS IN SOCIAL

NETWORKS

The foraging paradigm involves competitive searching for spa-

tial resources, but we have also studied collective searching for

abstract resources. Any organism that is capable of imitating its

peers must decide when and how much to imitate others’ solu-

tions versus discover its own solutions. To study this in a well-

controlled, if somewhat artificial, setting, we had participants

guess numbers between 0 and 100 using Internet-connected

computers (Mason, Jones, & Goldstone, 2005). Each of the

participants’ computers then showed them the points earned by

their guesses, based upon a hidden scoring function that had

either a simple single-peaked or complex triple-peaked form,

shown in Figure 2. The triple-peaked form had two local max-

ima—solutions that were better than their neighboring solutions

but not the best possible—and one global maximum. Over 15

rounds, participants received feedback not only on their own

guesses but also on their neighbors’ guesses. Neighbors were

determined by one of four types of network structures: locally

connected (connections only to one’s immediate neighbors),

random, fully connected (everybody connected to everybody

else), and small-world (e.g. local connections plus a few long-

range connections). Figure 2 shows sample networks for groups

with 10 participants.

For the easy, single-peaked function, participants in the fully

connected networks converged most quickly on the global

maximum, with the random and locally connected networks

performing worse. This pattern of results is readily explainable

in terms of the propensity of a network to disseminate innova-

tions quickly. Innovations disseminate most quickly in the full

network because every individual is informationally connected

to every other individual. For the trickier, three-peaked payout

function, the small-world network performs better than the fully

connected network, particularly for the first half of the trials. The

truism of ‘‘the more information, the better’’ is not supported.

Indeed, problem spaces requiring substantial exploration may

benefit from networks with mostly locally connected individuals.

The problem with the fully connected network is that everybody

ends up knowing the same information, and they thereby become

too like-minded, acting like a single explorer rather than like a

federation of independent explorers. The small-world structure

is an effective compromise between fully exploring a search
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Fig. 2. Percentage of participants within one standard deviation of the
global maximum (best solution) on each round of a problem-solving task
for which there were two versions (Mason, Jones, & Goldstone, 2005).
Groups of participants guessed numbers between 0 and 100 using Internet-
connected computers; each of the participants’ computers then showed
them the points earned by their own and others’ guesses, based upon a
hidden scoring function that had either a simple single-peaked (single-
peaked problem space) or complex triple-peaked (triple-peaked problem
space) form. In the fully connected network, everybody could see each
other’s guesses and outcomes. In the random network, participants only
had access to a set of randomly determined neighbors. In the locally con-
nected network, participants were informationally connected only to their
close neighbors. The small-world network also preserved local neighbor-
hoods but additionally had a few distant ‘‘short-cut’’ connections that
bridged different local regions. For the one-peaked problem, the best
group performance was initially found for the fully connected network.
For the triple-peaked problem, the best performance was initially found
for the small-world network.
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space and also quickly disseminating good solutions once they

are found (Watts & Strogatz, 1998). When the problem space is

even trickier than the three-peaked function, with a single sharp

needle peak for the global maximum and a broad local maxi-

mum, then the locally connected network performs best, con-

sistent with its preservation of local and quasi-independent

communities. Computational modeling work converges on these

empirical results in showing that more locally connected social

networks are beneficial when the problem the group has to solve

is difficult (Hutchins, 1995; Lazer & Friedman, in press).

Increasing connectivity among members of real-world cockpit

crews has also been shown to hamper group performance by

foreclosing exploration (Hutchins, 1995; see also Hinsz, Tin-

dale, & Vollrath, 1997 for a discussion of the danger of groups’

over-reliance on shared information).

FUTURE PROSPECTS FOR RESEARCH ON

COLLECTIVE BEHAVIOR

The previously described paradigms are united in exploring

group search behavior in both physical and abstract solution

spaces. In related work, we have examined the kinds of trail

systems that people create when they are motivated to take ad-

vantage of the trails left by their predecessors and, in so doing,

further reinforce and extend those trails (Goldstone & Roberts,

2006). The resulting trails represent a compromise between

going where one wants to go and going where others have gone

before. We have begun to apply this work on imitation and

exploration to modeling and predicting baby names. Names are

interesting because they are roughly neutral in terms of intrinsic

value but are culturally meaningful artifacts. ‘‘John’’ is not in-

trinsically a better name than ‘‘Warren’’ even though it occurs 35

times more frequently in the United States. The distribution of

baby names strongly suggests that, as with trails and scholarly

citations, the more often a name is used, the more often it will be

used in the future.

Other promising areas for experimental research on collective

behavior include coalition formation and coordination, social

dilemmas, group dynamics, and social specialization. The

common principles that repeatedly arise in our group-behavior

paradigms include (a) a tradeoff between exploration and

exploitation, (b) a compromise between individuals using

self- versus other-obtained information, and (c) the emergence

of group-level resource usage patterns that result from indi-

vidual interests but are not always favorable to those interests.

Unfavorable manifestations of these principles include ineffi-

cient population waves, bandwagon effects (in which people do

things because other people do the same), mismatches between

agent and resource distributions, disadvantages for highly con-

nected networks, and premature convergence of populations

on suboptimal solutions. Despite these pitfalls, collective search

continues to be a powerful case of distributed cognition for

the simple reason that individual search often fails to provide a

good solution in a limited time, and thus collaborating and

sharing solutions with others can dramatically improve search

efficiency.
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