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Abstract

One powerful way children can learn word meanings is via
cross-situational learning, the ability to discern consistent
word-referent mappings from a series of ambiguous scenes and
utterances. Various computational accounts of word learning
have been proposed, with mechanisms ranging from storing
and testing a single hypothesized referent for each word, to
tracking multiple graded associations and selectively strength-
ening some of them. Nearly all word learning models as-
sume storage of some feasible word-referent mappings from
each situation, resulting in a degree of learning proportional
to the number of co-occurrences. While these accumulative
models would generally predict that incorrect co-occurrences
would slow learning, recent empirical work suggests these ac-
counts are incomplete: paradoxically, giving learners incorrect
mappings early in training was found to boost performance
(Fitneva & Christiansen, 2015). We test this finding’s general-
ity in a new experiment with more items, consider system- and
item-level explanations, and find that a model with error-driven
learning best accounts for this benefit of initially-inaccurate
pairings.

Keywords: cross-situational word learning; error-driven asso-
ciative learning model; word learning;

Introduction
Among the many challenging aspects of learning a language
is the problem of determining which words pick out which
referents in our environment. When we encounter a new
word, there is rarely an explicit explanation of its meaning,
and the context it appears in may present any number of pos-
sible referents. While any given situation may present a high
degree of ambiguity with many possible referents, if learn-
ers are able to roughly track words and referents that often
co-occur, they may learn word meanings cross-situationally
(Gleitman, 1990). Both infants and adults have been found
capable of cross-situationally learning names for novel ob-
jects in the laboratory (Smith & Yu, 2008; Yu & Smith, 2007;
Kachergis & Yu, 2013), and such learning may be one impor-
tant means of acquiring the meanings of nouns (Smith, 2000).

It is generally assumed that learners accomplish cross-
situational learning by tracking the co-occurrence of each ut-
tered word with a subset of the visible referents in a scene.
A variety of biases have been proposed that could enable the
learner to restrict the number of word-referent mappings they
must attend to and remember. For example, the learners have
been shown to exhibit a mutual exclusivity bias, preferring to
map each word to one referent–and vice-versa (Markman &
Wachtel, 1988; Markman, Wasow, & Hansen, 2003; Ichinco,
Frank, & Saxe, 2009). Despite a variety of proposed biases
and constraints, considerable debate remains about the exact
mechanisms underlying this ability.

Models of Cross-situational Word Learning
A variety of computational models have been proposed, rang-
ing from models that store and test a single hypothesized
referent per word (Trueswell, Medina, Hafri, & Gleitman,
2013), to Bayesian models, (Frank, Goodman, & Tenenbaum,
2009), to associative learning models (Kachergis, 2012; Fa-
zly, Alishahi, & Stevenson, 2010). Typically, most models
can match overall human learning performance in several
experiments, and can be hard to distinguish on the basis of
goodness of fit. However, detailed modeling of human learn-
ing trajectories (Kachergis & Yu, 2017) and performance in
systematically varied conditions (e.g., repetitions and con-
text diversity: (Kachergis, Yu, & Shiffrin, 2016); repetitions
and number of distractors: (Yurovsky & Frank, 2015) have
revealed interacting memory and attentional constraints that
help differentiate models.

In many accounts of cross-situational learning, it is as-
sumed that forming an association (or hypothesis) between
a word and referent makes future exposures more valuable,
as the familiar trace will draw more attention if confirmed.
This advantage for prior knowledge (i.e., “rich-get-richer”)
is present both in hypothesis-testing accounts such as the
propose-but-verify model (Trueswell et al., 2013), as well as
in associative accounts that allocate more attention to pre-
existing associations (Kachergis, 2012).

However, errors also play an important role in a variety of
types of learning. For example, in motor control learning is
thought to be based on a mismatch between predicted sen-
sory outcomes of an action and the actual sensation (Seidler,
Kwak, Fling, & Bernard, 2013). Similarly, models of animal
and human conditioning experiments (Kamin, 1968; Rescorla
& Wagner, 1972; Kruschke, 2011) adjust associations based
on how surprising an outcome is when given particular cues.
A classic example of a prediction error-based learning mech-
anism is the (Rescorla & Wagner, 1972) model in which the
amount of learning on a trial is proportional to the amount of
prediction error (i.e., surprise at an outcome). When there is
a large difference between the actual outcome and predicted
outcome, a large change in the predictive value of a stimu-
lus results. Applied to cross-situational learning, surprise will
be generated by the failure of a word and referent to appear
together when they have been previously associated. This sur-
prise, generated by the difference between the expectation
of the word, given that object, and the actual outcome (fail-
ure of the word to appear), results in a higher learning rate
for a new word to be associated with that object. Despite
the widespread evidence of prediction error-based learning
in the animal kingdom, empirical investigations of its role in



word learning have been limited (though see Ramscar, Dye,
and McCauley, 2013). Most cross-situational word learning
experiments do not facilitate continuing prediction errors: in
most designs, each time a word is heard its intended referent
is visible, and thus as learning proceeds, the surprise that is
initially generated due to the discrepancy between the words
a learner predicts and what they actually hear will only de-
crease.

Findings from two recent empirical studies investigating
erroneous mappings early in learning suggest that greater pre-
diction error may play an important role in cross-situational
word learning (Fitneva & Christiansen, 2011, 2015). In
Fitneva and Christiansen (2011), eye-tracking during cross-
situational learning was used to investigate the performance
of learners who by chance initially looked longer or shorter
at the correct referent when a word was heard. Participants
were trained on 24 word-referent pairs in four blocks, see-
ing two referents on each trial while hearing two sequential
pseudowords. A post-hoc median split based on location of
longest fixation when a word was first heard was used to
place participants into High and Low Initial Accuracy con-
ditions (HIA and LIA, respectively). Thus, participants in the
HIA condition happened by chance to look at more of the in-
tended referents upon each word’s first occurrence than the
LIA participants, who happened to look more at the incorrect
referents. The accuracy of each trial in the first block (i.e.,
initial accuracy) was determined by the fixation time on each
referent after each pseudoword was displayed. A subset of 12
of the words was used for 2-alternative forced choice (2AFC)
test, in which a participant heard a word and selected the bet-
ter of two referents. Participants in the LIA condition outper-
formed the HIA group at test. Additionally, eye tracking data
provided implicit evidence for increased learning among LIA
participants. In instances where the correct referent was the
first location of fixation, the LIA group took longer to look
away than the HIA group, and when the location of first fixa-
tion was inaccurate the LIA group was quicker to move their
gaze. Proportion of time spent fixated on the accurate referent
increased in LIA participants, past that of HIA participants.

A follow-up study used a “familiarization” phase before a
similar cross situational learning task to induce differences
in initial accuracy, and tested three age groups: 4 year-olds,
10 year-olds, and adults (Fitneva & Christiansen, 2015). In
the familiarization phase, 10 unambiguous word-object pairs
were serially presented to participants. However, four of these
pairs would be switched in the subsequent cross-situational
training for participants randomly assigned to the HIA con-
dition (60% initial accuracy), while six of the 10 pairs would
be switched in the LIA condition (40% initial accuracy). This
exposure was meant to seed more (LIA) or fewer (HIA) inac-
curate hypotheses/associations before the subsequent cross-
situational training, which presented 15 2x2 trials (i.e., two
word-referent pairs per trial). Adult participants in the LIA
condition again showed higher performance than those in the
HIA condition, in line with the prior results. Notably, the ini-

tial accuracy of an item within a given condition seemed to
have no significant effect on performance. (Fitneva & Chris-
tiansen, 2015) interpreted this lack of an item-level effect as
evidence of a ‘system-level’ effect, meaning that “the effect
emerges from the cognitive resources recruited by initially
inaccurate items affecting initially accurate items as well” (p.
5). Interestingly, four year-olds showed an opposite effect of
condition, with HIA participants performing better, and 10
year-olds showed only an effect of item category, performing
better on initially accurate items in both conditions.

Fitneva and Christiansen (2015) suggest that the lack of
item-level effects of initial inaccuracy in adults (and in 4-
year-olds) may be taken as evidence of system-driven learn-
ing: rather than individual initially-inaccurate items garner-
ing extra attention (compared to IA items), more cognitive
effort is expended overall by adults in the Low IA condition,
triggered by the many inaccuracies. The present study again
considers system-level vs. item-level effects of IA in adults
by conducting an experiment with more to-be-learned items
than Fitneva and Christiansen (2015) (18 vs. 10), and with
a more sensitive 19-alternative forced choice (19AFC) test.
A potential concern about finding item-level effects of IA in
Fitneva and Christiansen (2015) is that adults had quite high
performance in the task, which tested half of the 10 studied
words using a 2AFC test. In addition, the difference between
the HIA and LIA conditions was one of only two words (6
out of 10 and 4 out of 10 accurate, respectively).

The superior performance on initially inaccurate items in
both experiments may be accounted for with a prediction er-
ror mechanism. An additional attentional account may be able
to account for the overall difference in performance between
the HIA and LIA conditions. Thus, the present design of-
fers a stronger manipulation, more data per participant, and
a more sensitive test, while addressing the same underlying
issue of the effects of initial accuracy on learning. We then
present modeling in an associative learning framework to de-
termine if learning behavior is better accounted for by an at-
tentional (system-level) mechanism, or by a prediction error-
based (item-level) mechanism.

Experiment
To investigate the robustness of the effect of low initial ac-
curacy observed in Fitneva and Christiansen (2015) in a set-
ting with more to-be-learned items and a consequently longer
training period, we use a similar 2x2 procedure with a “famil-
iarization phase”. However, in our design, we used studied 18
stimulus pairs (vs. 10), and a greater degree of difference be-
tween between high and low initial accuracy (12 vs. 6 of 18
pairs switched instead of 6 vs. 4 of 10 pairs switched). This
presents a stronger manipulation of initial accuracy: 66.6%
vs. 33.3% in the current study, compared to 60% vs. 40% in
Fitneva and Christiansen (2015). In addition, at test we pre-
sented the full array of possible referents for each word (18
studied + 1 unstudied: 19AFC vs. 2AFC), and tested all 18
words (vs. 5 of 10).



Methods

Participants Participants were 45 people recruited online
who completed the experiment in their web browser through
Amazon Mechanical Turk. All participants completed the en-
tire experiment, and were paid $1.50 for their participation.
Participants were randomly assigned to either the High or
Low Initial Accuracy condition (23 and 22 participants, re-
spectively).
Stimuli Stimuli consisted of images of uncommon real-
world objects and mono- and bisyllabic nonce words. Each
participant was given a random selection of 18 images and 18
nonce words from a collection of 72 images and words.
Procedure The experiment consisted of three phases: fa-
miliarization, study, and test. The familiarization phase was
one block of 18 trials. Participants were told they would be
shown examples of the type of objects and words they would
be learning. Each trial showed one object-pseudoword pair
for 3 s with a 1 s interstimulus interval (ISI), with each of the
18 pairs being shown once, in a randomized order.

For participants in the Low Initial Accuracy (LIA) condi-
tion, 12 of the 18 pairs were switched (inaccurate) in the sub-
sequent study phase, yielding 33.3% initial inaccuracy. In the
High Initial Accuracy (HIA) condition, 6 of the 18 pairs were
switched at study, yielding 66.6% initial accuracy. For each
participant, the total number of objects was constant, such
that when word-object pairs were switched at study, both the
word and object had been seen in the familiarization phase.

On each trial during the study phase, two word-object pairs
were shown simultaneously for 3 s, with a 1 s ISI. Objects
were shown side by side, with words vertically arrayed in the
center, below the object images. The location of objects and
words was randomized to ensure participants could not reli-
ably determine the pairing of stimuli by their location with
respect to one another. Trial order, along with which word-
object pairs were shown on a given trial, was randomized with
the constraint that each word-object pair was presented once
before being shown again. Thus, there were three (contigu-
ous) blocks of 9 trials, for a total of three presentations per
pair.

In the test phase, each trial displayed an array of all 18
studied objects along with one novel object (the same across
all test trials) and a single pseudoword from the study. For
each pseudoword, participants were instructed to click on the
corresponding object. In addition to testing each of the 18
studied pseudowords, a trial with a novel pseudoword was
added, to determine if participants were able to fast-map this
novel word to the novel object in the array. The order of test
trials was randomized for each participant.

A post-test questionnaire asked participants how many
words they thought they mapped correctly (0-19), their rating
of the engagement and difficulty of the task on scales of 1-
7, and whether they used any external memory aids (Yes/No;
indicating that they would still be paid, regardless).

Results
Participant’s item-level accuracy data for each studied item
were subjected to a logistic mixed-effects regression with
condition (High Initial Accuracy (HIA) or Low Initial Ac-
curacy (LIA)) as a between-subjects factor and item cate-
gory (Initially Accurate or Initially Inaccurate) as a within-
subject factor. Mixed-effects regression is more appropri-
ate for forced-choice data than ANOVAs, especially for ex-
periment designs with imbalanced cells such as this one
(Jaeger, 2008). The analysis was conducted using the afex
R package (Singmann, Bolker, Westfall, & Aust, 2018). This
analysis indicated a significant main effect of item category
(F(1,43.7)=42.19, p < .001), and no significant main ef-
fect of condition (F(1,43.7)=0.86, p = .36). Learners had
higher performance for items that were initially accurate
(M=.59, SD=.31) than for items that were initially inaccu-
rate (M=.35, SD=.30). There was a marginal interaction of
condition and item category (F(1,43.7) = 3.50, p = 0.07).
Shown in Figure 1, accuracy on initially inaccurate items
was higher in the LIA condition (M=.42, 95% CI=[.30, .55])
than in the HIA condition (M=.28, CI=[.15, .40]), but lower
than initially accurate items, which were similarly high
in both conditions (IA: LIA M=.60, CI=[.46, .73]; HIA
MHIA=.59, CI=[.47, .72]). Overall, in both conditions par-
ticipants learned on average the same proportion of the 18
items (MHIA=.49; MLIA=.48). Finally, for the novel word
presented at test, 47% of participants chose the unstudied test
object.
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Figure 1: Participants’ mean accuracy at test in each condi-
tion by item category, with dot size denoting the number of
items that could be learned in that category. Black dots show
mean performance per condition. Dotted line shows chance
(1/18). Error bars represent ±1 SE.

Post-test Questionnaire To investigate metacognitive
awareness, individuals’ performance was correlated with
post-test questionnaire results. Participants in both conditions



were aware of their performance level, with significant
correlations between their actual and estimated number of
learned items they learned (HIA r(20) = 0.67, p < .001)
and LIA (r(18) = 0.60, p < .01)). Rank-order tests were
used to investigate the relationship of engagement and
difficulty ratings with performance at test. Strong negative
relationships between performance at test and difficulty
ratings were found in both HIA (rs = −0.73, p < .001)
and LIA (rs = −0.77, p < .001) conditions. A system-level
account of benefits of initial inaccuracy might predict
that difficulty would be higher in the LIA condition, but
that engagement would be higher. However, there was no
difference in participant’s perceived level of difficulty in the
two conditions (t(42.7) = 0.56, p = .57), and participants in
the HIA condition trended toward being more engaged than
LIA participants (t(38.6) = 1.87, p = .07)–the opposite of
what might be predicted by a system-level account.

Discussion

Our results differ somewhat from those of Fitneva and Chris-
tiansen (2015) in that we do not find an overall advantage
for the Low Initial Accuracy condition. Moreover, we find in
both conditions that initially accurate items are learned more
often than initially inaccurate items, in agreement with con-
ventional assumptions. However, we do find that initially in-
accurate items are learned at a greater rate when they are a
greater proportion of the study items (i.e., in the LIA condi-
tion). Given that this experiment has a stronger manipulation
of initial accuracy (66% vs. 33% instead of 60% vs. 40%),
includes more studied items (18 instead of 10), and tests all
18 of them (instead of half) with a more sensitive test (19AFC
instead of 2AFC), we contend that it makes a stronger case for
the influence of varying initial inaccuracy on cross-situational
learning. In the following, we explore what mechanisms ac-
count for these effects.

Models
To determine whether the effect of initial accuracy implies
novel system-level or item-level learning mechanisms, we
first test whether the biased associative model (Kachergis,
Yu, & Shiffrin, 2012), with competing attentional biases for
existing associations and for attending to stimuli with un-
certain associates, is able to account for the effect of vary-
ing initial accuracy. This model, explained in detail be-
low, has successfully captured human behavior in a variety
of cross-situational learning experiments (Kachergis & Yu,
2017; Kachergis et al., 2016; Kachergis, 2012; Kachergis &
Yu, 2013). We also test two modified versions of this model,
representing the two theories of why forming initial inaccu-
rate associations may improve overall learning. In the system-
level variant, the learning rate on each trial was scaled by
the model’s relative uncertainty about the words for each pre-
sented referent, representing the theory proposed in (Fitneva
& Christiansen, 2015) that learners may be more alert in the
Low Initial Accuracy condition. In the item-level variant, we

add a simple prediction error-based learning mechanism bor-
rowed from Rescorla and Wagner (1972).

Biased Associative Model
The biased associative model (Kachergis et al., 2012) as-
sumes that learners do not attend equally to all possible word-
object pairings. Thus, although all co-occurrences are regis-
tered to some extent in associative memory (a word × object
association matrix), greater attention and storage is directed
to pairings that have previously co-occurred. Moreover, this
bias for familiar pairings competes with a bias to attend to
stimuli that have no strong associates (e.g., novel stimuli). In
addition to familiar associations being reinforced, attention is
also pulled individually to novel stimuli because of the high
uncertainty of their associations (i.e., they have diffuse asso-
ciations with several stimuli). Uncertainty is tracked by the
entropy of a stimulus’ association strengths, and attention is
allocated to a stimulus in proportion to this entropy.

Formally, given n words and n objects to be learned over
a series of trials, let M be an n word × n object association
matrix that is built incrementally during training. Cell Mw,o

will be the strength of association between word w and object
o. Strengths are augmented by viewing the particular stimuli.
Before the first trial, M is empty. On each training trial t, a
subset S of m word-object pairings appears. If there are any
new words and objects are seen, new rows and columns are
first added. The initial values for these new rows and columns
are k, a small constant (here, 0.01).

Association strengths are allowed to decay, and on each
new trial a fixed amount of associative weight, χ, is dis-
tributed among the associations between words and objects,
and added to the strengths. The rule used to distribute χ (i.e.,
attention) balances a preference for attending to unknown
stimuli with a preference for strengthening already-strong as-
sociations. When a word and referent are repeated, extra at-
tention (i.e., χ) is given to this pair—a bias for prior knowl-
edge. Pairs of stimuli with no or weak associates also at-
tract attention, whereas pairings between uncertain objects
and known words, or vice-versa, do not attract much atten-
tion. To capture stimulus uncertainty, strength is allocated us-
ing entropy (H), a measure of uncertainty that is 0 when the
outcome of a variable is certain (e.g., a word appears with
one object, and has never appeared with any other object),
and maximal (log2n) when all of the n possible object (or
word) associations are equally likely (e.g., when a stimulus
has not been observed before, or if a stimulus were to appear
with every other stimulus equally). In the model, on each trial
the entropy of each word (and object) is calculated from the
normalized row (column) vector of associations for that word
(object), p(Mw, ·), as follows:

H(w) = −
n∑
i=1

p(Mw,i) · log(p(Mw,i)) (1)

The update rule for adjusting the association between a
given word w and object o on a given trial is:



Mw,o = αMw,o +
χ · eλ·(H(w)+H(o)) ·Mw,o∑

w∈W
∑
o∈O e

λ·(H(w)+H(o)) ·Mw,o

(2)
In Equation 2, α is a parameter governing forgetting, χ is

the weight being distributed, and λ is a scaling parameter gov-
erning differential weighting of uncertainty (H(·); roughly
novelty) and prior knowledge (Mw,o; familiarity). As λ in-
creases, the weight of uncertainty (i.e., the exponentiated en-
tropy term, which includes both the word and object’s associ-
ation entropies) increases relative to familiarity. The denom-
inator normalizes the numerator so that exactly χ associative
weight is distributed among the potential associations on the
trial. For stimuli not on a trial, only forgetting operates. As
each word w is tested, learners choose referent o from the m
alternatives in proportion to associative strength Mw,o.

Biased Associative Model with Attention
To capture the theory proposed in (Fitneva & Christiansen,
2015) that learners may be more alert in the Low Initial Ac-
curacy condition, we scale the learning rate used on each trial
by the mean entropy of the objects on a given trial, relative to
the overall entropy of all associations. Thus, trials with more
uncertain items–as in the Low IA condition, and particularly
for initially inaccurate items–will have a higher learning rate.

Predictive Biased Associative Model
This model differs from the original Biased Associative
Model in two ways. First, for the cues (objects) on the trial,
let the prediction of each outcome (word w) be

Vw =
∑
o∈O

Mw,o (3)

Vw was added to the update equation for on-trial word-
object associations as a prediction error term

Mw,o = αMw,o+χ · eλ·(H(w)+H(o)) ·Mw,o · (β−Vw) (4)

where β is the maximum association value (here, 1), and as
before α is a memory fidelity parameter, χ is a learning rate,
and λ is relative novelty/familiarity focus. The second differ-
ence is the removal of the denominator, which makes it possi-
ble for the predictive model to distribute different amounts of
associative weight per trial. Thus, the amount of adjustment
for a particular associationMw,o is scaled not only by the cur-
rent strength of that association and the uncertainty (entropy)
of w and of o, but also proportional to the prediction error of
w from the sum of all associations involving w and objects
on that trial.

Model Fitting
All models were fit hierarchically: first, differential evolution
optimization (Ardia, Mullen, Peterson, & Ulrich, 2015) was
used to find best-fitting parameters for each individual, and

then optimization was run again with a regularization term to
penalize parameter values far from the medians of the group’s
parameter values.1

Model Results
The best-fitting performance achieved by each model, along
with Mean Squared Error (MSE) are shown in Figure 2, as
well as in Table 1. All variants of the Biased Associative
Model (BAM) match performance well in the HIA condi-
tion, for both initially accurate and inaccurate items. How-
ever, in the LIA condition, both the original BAM and BAM
+ Attn underestimate human performance on initially inac-
curate items and overestimate learning of initially accurate
items, while the Predictive BAM fits well.

Condition High IA Low IA

Initially Accurate False True False True MSE r2

Human .28 .59 .42 .60 – –
Biased Assoc. .26 .60 .30 .66 .026 .939
Biased Assoc. + Attn .27 .60 .34 .67 .025 .941
Predictive Biased Assoc. .27 .59 .40 .63 .008 .983

Table 1: Human performance vs. best-fitting models.

Model Discussion
All models match human performance well in the High Initial
Accuracy (HIA) condition, and predict slightly higher than
observed performance for initially accurate items in the Low
IA condition. Both the original Biased Associative Model
(Kachergis et al., 2012) and the variant with a learning rate
scaled to the uncertainty (i.e., entropy) about items on the cur-
rent trial are unable to match human performance for initially
inaccurate items in the Low IA condition. However, the vari-
ant of the Predictive Biased Associative Model does match
human performance, suggesting that learners allocate more
attention to associations involving words from initially inac-
curate items as a result of prediction error.

Discussion
Similar to earlier studies of the effects of initial accuracy
on cross-situational word learning (Fitneva & Christiansen,
2011, 2015), our findings show that experiencing a single
initial inaccurate mapping of more word-object pairs selec-
tively benefits the later learning of those initially mismatched
pairs. However, in contrast to prior research, which found
overall higher learning in the Low Initial Accuracy condition,
we found the benefit was not conferred on initially accurate
items. Rather, performance on initially accurate items in our
experiment was similarly high in both conditions–and higher
than initially inaccurate items in either condition. As men-
tioned earlier, the present experiment presents a stronger test
of the effects of initial accuracy due to the stronger manipu-
lation, the larger number of studied and tested words, and the

1This approximates Gaussian L1-regularization.
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Figure 2: The Biased Associative Model (left) fails to show much benefit for initially inaccurate items in the Low IA condition,
unlike people. This is largely true for the variant of the model that gives greater attention to trials with high-entropy stimuli
(middle), while the associative model with prediction-error based learning (right) fits quite well (MSE=.008).

lower chance rate of the test format. However, we should note
that our stronger manipulation resulted in a slightly higher
proportional imbalance of item types per condition (67% vs.
33%)–although we did have more items of both types per
condition. It’s possible that this greater number of items in-
fluenced participants’ awareness and thus their treatment of
initially inaccurate items. However, we note that difficulty
was similarly rated similarly in both groups, and engagement
trended higher in the HIA group–opposite to what might be
expected if more attention was drawn by the LIA condition.

Our item-level results show that initial accuracy predicts a
greater chance of remembering the pairing of that item, which
is in accordance with conventional assumptions. However,
in the LIA condition initially inaccurate pairs are ultimately
more likely to be learned. One explanation may be that er-
rors draw attention selectively to initially inaccurate items.
Analysis of fixation times in the eye-tracking experiment of
Fitneva and Christiansen (2011) indeed suggests that atten-
tion to targets overall increases with greater error. Addition-
ally, the pattern of our results suggests an attention effect: the
HIA condition may have included too low a proportion of in-
accurate items to draw attention attention away from the ma-
jority accurate items. In the LIA group, if there was an overall
increase in attention, we should expect to see an increase in
performance for initially-accurate (IA) items as well, espe-
cially as there were only six IA items in this condition. Our
modeling results are consistent with this idea, as without a
learning rate proportional to item-level prediction error the fit
is notably poor for initially inaccurate items in the LIA con-
dition.

Together with Fitneva and Christiansen (2011, 2015), our
results suggest that cross-situational word learning is subject
to prediction error-based learning. Our account suggests that
when learners see referents they may predict which words

will be heard. Subsequently, they allocate attention based on
competing biases toward known associations and referents
with uncertain associations (Kachergis et al., 2012), and learn
at a rate proportional to their surprisal at hearing each word
with the given referents. Further research is needed to deter-
mine whether this item-level prediction error-based learning
mechanism accounts for human behavior—both in typical re-
search settings which offer few inaccurate mappings, as well
as in more naturalistic scenarios—to help us further under-
stand the domain-generality of error-based learning.
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