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Abstract

Mental localization efforts tend to stress the where more
than the what. We argue that the proper targets for lo-
calization are well-specified cognitive models. We make
this case by relating an existing cognitive model of cat-
egory learning to a learning circuit involving the hip-
pocampus, perirhinal, and prefrontal cortex. Results
from groups varying in function along this circuit (e.g.,
infants, amnesics, older adults) are successfully simu-
lated by reducing the model’s ability to form new clus-
ters in response to surprising events, such as an error
in supervised learning or an unfamiliar stimulus in un-
supervised learning. Reported task dissociations (e.g.,
categorization vs. recognition) are explained in terms of
cluster recruitment demands.

A major goal of cognitive psychology has been to de-
velop an understanding of behavior in terms of compu-
tational principles. However, we are often left with the
question of what these models tell us about the brain.
The answer is certainly not clear. The growing area of
cognitive neuroscience offers an endless source of new
embers for this debate, as more and more cognitive func-
tion is localized and described in terms of specific brain
processes. However, by focusing on the localization of
mental function (i.e., where is processes X in the brain?),
we run the risk of amassing a list of brain areas associ-
ated with certain tasks in the absence of useful linking
theories reflecting how those regions interact to control
behavior in our daily lives.

In this paper, we argue that well-specified, process
models of cognitive functions are the appropriate targets
for localization. Successful process models offer a num-
ber advantages over folk psychological, ad hoc, or tra-
ditional psychological theories. For example, model de-
veloped in cognitive psychology make predictions, have
mechanisms and dynamics which can be related to brain
measures, and offer a simple and clear starting point for
developing theories of brain function. To support our
conjecture, we focus on relating a process model of hu-
man category learning to a learning circuit involving the
hippocampus, perirhinal cortext, and prefrontal cortex
(PFC).

The model we consider, Supervised and Unsupervised
STratified Adaptive Incremental Network (SUSTAIN),
is applied to human data from a number of populations
(infants, amnesics, and older adults) who differ in their
category learning ability. Armed with its computational
principles and the proposed mapping, SUSTAIN is able

to predict how degraded function along this circuit af-
fects category learning performance for these (and other)
groups. In particular, SUSTAIN relates the degree of
preserved function to how readily members of a group
can individuate events, as opposed to collapsing experi-
ences together into a common gestalt (see Figure 1).

After introducing the model, we explain the close cor-
respondence between aspects of the model and the cur-
rently understood function of a learning circuit involving
PFC, the hippocampus, and perirhinal cortex. We then
review a number of simulations which support our the-
ory. In doing so, we provide a novel framework for under-
standing the role this circuit plays in category learning
ability. In addition, our analysis suggests a recasting
of several dichotomies popular in the field, such as the
distinction between categorization and recognition, rec-
ollective and familiarity-driven responding, and episodic
and semantic memory.

SUSTAIN and the Proposed Mapping

We begin by introducing the computational theory
(SUSTAIN) and the bridge theory linking SUSTAIN
to functional components in the brain. Due to lim-
ited space, readers interested in the mathematical de-
tails of the model are directed elsewhere (Love, Medin,
& Gureckis, 2004).

SUSTAIN

The basis for representing category knowledge has
been proposed to be rule-based, exemplar-based, or
prototype-based. =~ SUSTAIN proposes that clusters,
which display characteristics of all three of the afore-
mentioned approaches, underlie our category represen-
tations. A cluster is a bundle of features that captures
conjunctive relationships across dimensions. For exam-
ple, a cluster can capture the fact that having wings,
flying, and having feathers tend to co-occur.

In SUSTAIN, categories are represented by one or
more clusters. For example, the category of birds might
be represented by multiple clusters which capture natu-
ral patterns of regularity within the category (e.g., song
birds, birds of prey, penguins, and ostriches each might
be represented by separate clusters which all belong to
the super-ordinate). A cluster can also belong to mul-
tiple categories at once because they are linked to cat-
egories by association weights that are adjusted during
learning.



Figure 1: Various groups are ordered by PFC-MTL func-
tion. Groups with higher PFC-MTL function are pre-
dicted to have an increasing ability to individuate items
in memory (i.e. create new, distinct clusters), while low
functioning groups such as amnesics are assumed to col-
lapse items in a single gestalt. SUSTAIN captures differ-
ences along this continuum by varying a single parameter
related to how readily additional clusters are recruited
during category learning.
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SUSTAIN’s clusters mediate the relationship between
inputs (e.g., stimulus presentation) and output (e.g.,
category assignment). SUSTAIN begins with one cluster
centered on the first training item. Additional clusters
are recruited in response to surprising events. In
unsupervised learning, a surprising event is exposure to
a sufficiently unfamiliar or novel stimulus. In supervised
learning, a surprising event is a classification error.
SUSTAIN’s recruitment scheme implies that surprise
drives differentiation of critical stimulus patterns. When
a surprising event does not occur, the current stimulus
is assigned to the dominant cluster (i.e., the cluster
most activated or similar to the current item) and this
dominant cluster moves towards the current stimulus so
that the cluster converges to the centroid or prototype
of its members. Thus, in the absence of surprise, events
are collapsed together in memory. The ability to create
new clusters forms a continuum. At one extreme,
SUSTAIN is a prototype model where each category
is represented by a single cluster, while at the other
extreme the model becomes an exemplar model where
each item is captured in its own cluster.

Mapping Hypothesis

Central to SUSTAIN is the ability to form new clusters
in response to surprising events. This type of learning
is rapid and involves forming episodic codes or traces
which support subsequent learning. A mature and in-
tact learning circuit involving the hippocampus, PFC,
and perirhinal cortex is assumed to underly this ability.
At its essence, our theory predicts how degraded func-
tion in this learning circuit affects learning performance
for various populations. Groups with higher PFC-MTL
function are predicted to have an increased ability to
individuate items in memory (i.e. create new, distinct

Figure 2: The Logic of Cluster Recruitment.
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clusters), while low functioning groups such as amnesics
are assumed to collapse items in a single gestalt.

Figure 2 describes the logic of cluster recruitment and
highlights the nature of the mapping between this pro-
cess and components of the PFC-MTL circuit. Newly
formed clusters are assumed to be created by the hip-
pocampus. These codes migrate to structures in the
Medial Temporal Lobe (MTL), such as the perirhinal
cortex, through reciprocal connections with entorhinal
cortex. These existing representations in the perirhinal
cortex support a signal of familiarity or fit. The PFC
is assumed to monitor surprise and direct encoding and
retrieval processes.’

In support of our proposal, PFC and perirhinal cor-
tex are interconnected and participate in a circuit that
could direct the hippocampus’s encoding of surprising
events (see Ranganath and Rainer, 2003, for a review).
The PFC monitors surprise by comparing the current
stimulus to representations in perirhinal cortex (which
provides a measure of familiarity or fit) and based on
this comparison directs hippocampal encoding. Indeed,
lesioning the connection between PFC and perirhinal
cortex eliminates the memory advantage for surprising
items (Parker, Wilding, & Akerman, 1998). In ERP
studies, the PFC is associated with the P3 novelty signal
which orients attention towards novel stimuli and which
has been found to correlate with item memory (Ran-
ganath & Rainer, 2003).

The key component of the theory brought out in the
subsequent simulations concerns the idea that the cre-
ation of new codes (or clusters) depends on a intact
and mature hippocampus. Broadly constructed, clusters
capture key patterns and relations between stimulus ele-
ments into a discrete bundle. In this way, cluster creation
in SUSTAIN is akin to the creation of a “conjunctive
code” (a representation thought to be dependent on the
hippocampal formation) (Sutherland, McDonald, Hill, &
Rudy, 1989). Findings from amnesic patients with hip-

!Note that disruption anywhere along the learning circuit
can result in the failure to encode a surprising event. In mod-
eling terms, the degree of PFC and hippocampal function are
captured by separate parameters. Here, we focus on popula-
tions and tasks in which hippocampal function should be the
limiting factor.



pocampal lesions support this position. For example,
amnesic patients equated with controls for item recog-
nition remain impaired in list discrimination (Downes,
Mayes, MacDonald, C., & Hunkin, 2002), which requires
encoding the conjunctions of item and list, and patients
with hippocampal damage make more conjunctive errors
than healthy controls (Kroll, Knight, Metcalfe, Wolf, &
Tulving, 1996).

In SUSTAIN, a single parameter relates to the de-
gree of spared hippocampal function. At one extreme
are amnesic patients lacking a hippocampus at the other
are young normals. The parameter controls SUSTAIN’s
ability to form clusters that are similar to existing clus-
ters. When the parameter is set low (poor hippocampal
function), SUSTAIN can only successfully form a new
cluster when the current stimulus is drastically different
from any existing cluster causing most events or episodes
to be undifferentiated.

Amnesics, Category Learning, and
Recognition Memory

As shown in Figure 1, our theory characterizes amnesic
patients by their inability to individuate events (i.e., to
recruit clusters in response to surprising events). Knowl-
ton and Squire’s (1993) studies illustrate this point in a
category learning task. K&S found that amnesic patients
can categorize, but not recognize, dot pattern stimuli at
accuracy levels comparable to matched controls (but see
Palmeri and Flanery, 1999).

In K&S’s categorization task, participants viewed
twenty low and twenty high distortions of an underly-
ing prototype during the study phase. Participants were
then informed that these items all belonged to a com-
mon category. At test, participants indicated whether
the presented stimulus was a member of the category.
Half the test trials consisted of random pattern unre-
lated to the prototype underlying the study items. The
other half of the test trials included the presentation of
the prototype (which was not actually shown during the
study phase), novel low distortions of the prototype, and
novel high distortions of the prototype.

In the recognition task, participants viewed five dis-
tinct patterns eight times each. At test, participants
were shown these five items and five random foils and
indicated whether the stimulus was shown in the study
phase. The main results, illustrating a dissociation be-
tween categorization and recognition performance for
amnesic patients, along with SUSTAIN’s fit of these
data, are shown in Figure 3 (top). In the categoriza-
tion test phase, both groups (and SUSTAIN) displayed
a generalization gradient that fell as similarity to the
prototype decreased (Figure 3, bottom).

Simulations of Knowlton and Squire (1993)

Low hippocampal function in SUSTAIN is modeled by
reducing the model’s ability to recruit a clusters in re-
sponse to a surprising event in the presence of similar,
existing clusters. Thus, groups low in hippocampal func-
tion are modeled as having a lower setting of the thresh-
old parameter which controls this ability. Besides dif-

Figure 3: Top: The main results from Knowlton and
Squire (1993) are shown along with SUSTAIN’s fit. Bot-
tom: The generalization gradient for participants in the
categorization test phase along with SUSTAIN ’s fit
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ferences along this single parameter, simulations of am-
nesics and controls were identical.

In K&S’s categorization task, simulations for both
groups recruited only a single cluster. The nature of
the study items are sufficiently similar to one another
that they were all collapsed into a single cluster. Be-
cause both groups have the same internal representation
of the study items (i.e., one cluster), SUSTAIN necessar-
ily predicts equivalent performance for the two groups.

In contrast, the simulations for the controls in the
recognition task result in five clusters being recruited.
The five distinct patterns shown in the recognition study
phase are sufficiently dissimilar that they are individ-
uated (i.e., each item is surprising when initially pre-
sented). In the amnesic simulations of the recognition
task, each item is also surprising when initially pre-
sented, but because of low hippocampal function, clus-
ters are not always recruited in response to these sur-
prising events. Instead of recruiting five clusters as in
the normal simulations, SUSTAIN recruited 2-4 clusters
in the amnesic simulations collapsing either some or all
of the items together in a single cluster.

Multiple Systems?

K&S interpret their results in terms of multiple learn-
ing systems engaged in categorization and recognition.
Following Nosofsky and Zaki (1998), we suggest that
recognition and categorization are essentially equivalent.
In fact, in our modeling, recognition and categorization
are modeled in an identical fashion. Our results suggest
that the underlying variable for explaining performance
differences between the two populations is not recogni-
tion or categorization, but reliance on conjunctive codes
(i.e., number of clusters required). In the case of K&S’s



design, only one cluster is required for successful catego-
rization and predicted performance is identical for both
groups. However, for a more difficult category learn-
ing task that requires multiple clusters (e.g., one that
involves multiple categories or category subtypes), SUS-
TAIN predicts amnesic patients should show a deficit rel-
ative to controls (in line with Zaki’s 2004 meta-analysis).

The simulations reported here bear a resemblance to
Nosofsky and Zaki’s (1998) modeling of K&S (1993) with
an exemplar model. In their account, amnesic patients
were modeled as having broader generalization gradients
around each exemplar relative than controls. This led
to a “blurring” or averaging of the internal representa-
tions for simulated amnesics, which is quite similar to
the clustering process we advocate here. However, our
account differs in that we place the locus of deficit at
encoding rather than at recall. Finally, while Nosofsky
and Zaki advocated a single-system view of recognition
and categorization, we see it as likely that multiple and
overlapping systems contribute to both recognition and
categorization.

Category Learning in Early Infancy

Considerable developmental changes occur in the hip-
pocampus during the first year of life. For exam-
ple, hippocampal volume reaches adult level during sec-
ond half of first year of life (Kretschmann, Kammradt,
Krauthausen, Sauer, & Wingert, 1986), cell differenti-
ation surges in the hippocampus between 7-10 months
(Seress & Mrzljak, 1992) and continues into the second
year while connectivity between the hippocampus and
other areas continues to increases into the second year
(Benes, 1994). These changes are consistent with a gen-
eral “back to front” trajectory in neurological develop-
ment, starting with basic visual areas and progressing
toward frontal areas (Johnson, 2003).

Given these developmental changes, one reasonable
hypothesis is that infants’ PFC-MTL learning circuit will
not be fully functional. In terms of the continuum shown
in Figure 1, young infants are assumed to have ability
closer to amnesic patients than to young adults. Thus,
infants should show difficulty in conjunctive tasks that
require multiple clusters.

Younger and Cohen (1986) conducted a series of stud-
ies assessing developmental changes in category learning
ability. In their studies, both four and ten-month-old in-
fants were habituated to a set of sequentially presented
visual stimuli depicting imaginary animals which varied
along three attributes. Two of these attributes corre-
lated perfectly across the habituation items. The ab-
stract structure of these items was [1 1 1], [1 1 2], [2
2 1], and [2 2 2] where the first two dimensions were
correlated (i.e., a particular type of animal head always
appeared with a particular type of tail). After the habit-
uation phase, infants were shown test items that either
followed the correlated pattern of the habituation items
or violated it (i.e., the consistent test item was [2 2 2]
and the inconsistent item was [2 1 1]). If infants learned
that nature of the relationship between the correlated di-
mensions, they should find the uncorrelated item to be

Figure 4: Looking times for four-month-old and ten-
month-old infants in Younger and Cohen’s (1986) Ex-
periment 2 are shown along with SUSTAIN’s fit.
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novel and therefore look at it longer. In contrast, if in-
fants failed to encode the attribute relation, but instead
only encoded attribute-value (i.e., feature) frequencies,
both test items should be equally interesting and should
yield equal looking times.

The basic findings, are shown in Figure 4.2 Four-
month-old infants looking times for the consistent and
inconsistent items were equal, whereas ten-month-old in-
fants devoted more time to the inconsistent item than to
the consistent item.

Simulations of Younger and Cohen (1986)

Due to the continued maturational changes in PFC-
MTL function four-month-old infants were modeled with
a lower setting of the hippocampal function parameter
(like amnesics). SUSTAIN displayed the same pattern
of results as the human infants (see Figure 4). Figure 5
shows the spatial configuration of SUSTAIN’s clusters
relative to study and test items. In the four-month-old
simulations (shown in the left plot of Figure 5), SUS-
TAIN recruited a single cluster. The single cluster repre-
sents the average of the four study items (i.e., the feature
frequencies). This single cluster is located in the center
of the space and is equidistant from both the consistent
and inconsistent test items. Given this configuration,
SUSTAIN predicts that both test items are equally fa-
miliar.

In the 10-month-old simulations (shown in the right
plot of Figure 5), SUSTAIN recruited two clusters. Each
of these two clusters represented the average of two of
the four study stimuli. One cluster represented the av-
erage of stimuli [1 1 2] and [1 1 1] (located at 1 1 1.5),
whereas the other represented the average of stimuli [2
2 2] and [2 2 1] (located at 2 2 1.5). In this case, the in-
consistent test stimulus is farther from the nearest clus-
ter than the consistent test stimulus is. This effect is
magnified by SUSTAIN’s shift of attention to the two
correlation-relevant attributes. These two clusters effec-

2We focus here on the results of Experiment 3, al-
though SUSTAIN successfully fits all the studies contained in
Younger and Cohen where infants showed learning (Gureckis
& Love, 2004).



Figure 5: A geometric rendering of the stimulus struc-
ture from Exp. 2 along with SUSTAIN’s clustering so-
lutions is shown.

Ten-month-old Simulation

Four-month-old Simulation

tively encode the conjunctive relationship between the
first two attributes of the study items.

These simulations closely parallel the simulations of
amnesics in K&S (1993). Both young infants and am-
nesic patients are sensitive to feature frequency, but not
to feature relations.

Effect of Aging on Category Learning

Aging does not affect the brain uniformly. Imaging and
neuroanatomical studies reveal greater shrinkage in the
hippocampus and PFC compared to other areas, such as
parietal and occipital cortex (Flood & Coleman, 1988;
Raz, 2000). Released in response to environmental stress
over the course of our lives, cortisol has been shown to
reduced hippocampal volume and is linked to deficits
in hippocampal mediated memory tasks (Lupien et al.,
1998). Given these assaults on the PFC-MTL learning
circuit, we predict that (like infants and amnesics) older
adults should be impaired at conjunctive learning tasks
which (in terms of SUSTAIN) require the multiple clus-
ters.

Simulating the effects of aging on category
learning

Love, Gureckis & Worchel (under review) report a study
aimed at directly comparing younger and older adult
performance in a single task. Younger and older adults
were trained by supervised classification learning on
two contrastive categories. Each category was defined
by an imperfect rule, such that all members of the
category shared a value along a single attribute except
for a single exception. For instance, if the critical
dimension was size, then all members of category A
might be “large” except for the one exception which
would be “small”. Likewise, all members of category B
would be “small” except for a single “large” exception.
Participants completed 80 study trials and then com-
pleted a test phase consisting of the eight studied items
and eight novel items that contained the same features
as the studied items re-arranged. In the test phase,
participants indicated the category membership of the
stimulus as in the study phase.

Figure 6: Study phase accuracy for the study phase of
the aging study are shown, along with SUSTAIN’s fit.

———0--- SUSTAIN Older Adult
———&——- SUSTAIN Young Adult
—=a—— Older Adult
—=—— Young Adult

Rule Exception

The main results from the study phase are shown
in Figure 6. Older adults performed equivalently to
younger adults on rule-following items, but showed a
large deficit on the exception items. Within the older
adult group, the difficulty with exception items increased
with age, whereas performance actually increased for
rule-following items with age. SUSTAIN’s predictions
mirror this result.

When modeling older adults, SUSTAIN’s hippocam-
pal parameter was set low in order to limit the model’s
ability to form new clusters that are similar to exist-
ing clusters (as in previous simulations of amnesic pa-
tients and four-month-old infants). SUSTAIN predicts
that exception items can only be mastered by forming
separate clusters to encode these items. Because excep-
tion items will be fairly similar to existing clusters that
capture rule-following items from the opposing category,
SUSTAIN predicts that these items should be especially
difficult for older adults to master (as shown in Figure 6).

For the younger adults, SUSTAIN created separate
clusters for each exception allowing it to eventually mas-
ter these items. In contrast, in the older adult simula-
tions, SUSTAIN assigned the exception items to clusters
that capture the rule-following items from the opposing
category. For these simulations, SUSTAIN failed to in-
dividuate the exception items and treated these items
as if they provided support for the discriminative rule.
As a result, SUSTAIN’s clusterings for the older adult
simulations predict that older adults should have more
abstract rule representations than younger adults (their
solution of collapsing all rule-following items into a single
cluster for each category does not perserve item-specific
information and instead stresses the rule dimension).

This prediction held. Older adults applied the imper-
fect rule in the transfer phase as often to rule-following
items that appeared in the study phase as they did novel
items. In contrast, younger adults rule application was
more influenced by similarity to exemplars seen in the
study phase, a pattern of results which prove challeng-
ing for exemplar theories (Nosofsky & Zaki, 1998).



Discussion

In this paper, we argue that localizing cognitive mod-
els (that simulate interesting behaviors) are our best bet
for directing and understanding empirical research. At
some level, every researcher relies on a model of how
cognition works, even if that model is not explicitly ac-
knowledged. We argue the best model to use is one that
is well-specified, relatively simple, and verified empiri-
cally, that is, an existing cognitive model.

We demonstrated this by applying an existing model
of category learning to category learning results from
hippocampal amnesics, young infants, young adults, and
older adults. The mapping between the model and the
PFC, hippocampus, and perirhinal cortex was simple
and incomplete, yet was sufficiently powerful to place
findings from these numerous subfields into a common
theoretical framework. Our account provides new per-
spective on the influence of hippocampal impairment on
category learning which could have implications for both
treatment and diagnosis. Although not addressed here,
our theory also applies to other groups such as clini-
cally depressed, those suffering from the early stages of
Alzheimer’s, or even to groups at the opposite extreme
who might hyper-individuate such as autistics.

In addition, our account provides an unique perspec-
tive on many popular debates in the field. For example,
our simulations suggest that it is the number of distinct
codes needed to learn a task which is the critical dimen-
sion influencing learning rather than arbitrary task la-
bels such as “categorization” or “recognition”. Our the-
ory naturally predicts that differences between groups
in their ability to individuate events in memory interact
with task demands to explain performance. SUSTAIN’s
cluster recruitment method also blurs the distinction be-
tween semantic and episodic memory. New clusters be-
gin as distinct, episodic traces encoding exceptions and
surprisingly novel stimuli, but later may evolve to be
more abstract through continued learning making such
distinctions one of degree rather than of kind.
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