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Some information is provided to us by the environment, and 
the timing and sequence of presentation is not under our 
immediate control (e.g., watching TV without a remote control 
or attending a lecture). Other information becomes accessible 
as a direct result of our own actions and choices, such as when 
we search for information online, interact with an unfamiliar 
device or mechanism, or ask questions of those around us. The 
goal of the present article is to consider the implications of 
these two modes of learning from both a cognitive and compu-
tational perspective.

The distinction between “active” and “passive” information 
acquisition is a perennial and hugely influential topic in the 
learning sciences (Bruner, Jolly, & Sylva, 1976; Montessori, 
1912/1964; National Research Council, 1999; Piaget, 1930). 
For example, instruction methods such as discovery learning 
(Bruner, 1961), experiential learning (Kolb, 1984), and inquiry 
learning (Papert, 1980) all advocate situations in which learners 
engage in active hypothesis testing, interaction with learning 
materials, and self-directed exploration. In many of these 
accounts, self-directed acquisition of information is seen not 
only as a pedagogical tool but also as a “motivating force” on 
the desire to learn (Berlyne, 1960; Hebb, 1955). Similar ideas 
are prominent in theories of cognitive development (Adolph & 
Eppler, 1998; Gibson, 1988; Kuhn, Black, Keselman, & Kaplan, 
2000; Montessori, 1912/1964; Piaget, 1930; Schulz & Bonawitz, 
2007).

However, relative to the widespread enthusiasm for an 
“active” view of human learning, there has often been less 

attention given to self-directed information acquisition in cog-
nitive psychology and cognitive neuroscience. In fact, empiri-
cal studies of human learning and memory are most typically 
passive in that the experimenter tightly controls (and manipu-
lates) what information is presented to the learner on every 
trial. As a result, basic research in learning and memory has 
sometimes failed to make contact with core issues in educa-
tional research. Meanwhile, the many uses of the term “active 
learning” or “discovery learning” throughout the learning sci-
ences have led to increasingly divergent conceptions of the 
basic issues (Chi, 2009).

In this article, we provide a synthesis of research in cogni-
tive science and machine learning considering the interplay of 
learning, decision making, and information gathering. In par-
ticular, we focus on situations in which learners are in control 
of the information they experience by way of their ongoing 
decisions (i.e., learning is self-directed). Our review demon-
strates why self-directed learning is not simply a special case 
of passive learning but has important and varied implications 
for both what is learned from any experience and for what is 
learnable. In addition, we explore how self-directed learning 
in humans can be understood in terms of key computational 
principles borrowed from “active learning” research in the 
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machine learning literature. This subfield of computer science 
seeks optimized learning algorithms that can construct or con-
trol their own training experience. Finally, we address the fun-
damental dilemma regarding self-directed learning that lies at 
the heart of recent debates in the educational literature (e.g., 
Klahr & Nigam, 2004; Mayer, 2004): When does self-directed 
learning improve learning, retention, or transfer, and when do 
learners fall prey to biases that limit their ability to effectively 
gather information? Although much of the research surveyed 
in this review focuses on basic cognitive processes involved in 
learning and memory, we highlight how this emerging cluster 
of ideas may apply to educationally relevant scenarios. We 
conclude that self-directed learning remains a relatively under-
studied issue in cognitive science (at least in comparison to the 
education literature) but one that holds fundamental implica-
tions for theories of learning and memory.

What Is Meant by “Self-Directed” Learning?
Although the idea that learning should be “active” or “self-
directed” is a long-standing and influential idea, there is often 
a lack of agreement about exactly what this means (Chi, 2009). 
For example, self-directed learning is alternately associated 
with physical activity during a task (e.g., Harman, Humphrey, 
& Goodale, 1999), the generation effect (i.e., enhanced long-
term memory for material that is actively retrieved; Crutcher 
& Healy, 1989; Jacoby, 1978), or with elaborative cognitive 
processes such as providing self-generated explanations 
(Lombrozo, 2006; Roscoe & Chi, 2007, 2008). The present 
article focuses on a single dimension of self-directed learning, 
namely, the consequence of allowing learners to make deci-
sions about the information they want to experience (see  
Fig. 1). Our assertion is that interactions between information 
sampling behavior (i.e., the decision to access or gather some 
piece of information) and learning is one domain in which 
education, cognitive science, cognitive neuroscience, and 

machine learning research have the greatest immediate poten-
tial for cross-fertilization.

However, distinguishing between these various senses of 
self-directed learning is difficult in most realistic learning situ-
ations. For example, in a passive learning environment wherein 
choices about information selection are limited, learners can 
still choose to selectively attend to different cues or features of 
the presented stimulus (e.g., Rehder & Hoffman, 2005). Even 
a teacher-led, “passive” student might be cognitively active in 
the sense of mentally evaluating hypotheses or explanations, 
just as a self-directed learner may engage in self-explanation 
in order to decide what information to access. Likewise, the 
degree of engagement of individual learners in a task (i.e., 
their level of “cognitive activity”) may be influenced by 
whether they are physically active during learning. Neverthe-
less, as our review will summarize, there are important psy-
chological implications simply from allowing learners to make 
decisions about what information they want to access.

Experimental Approaches to  
Self-Directed Learning
As defined above, self-directed learning situations are relevant 
to a broad range of cognitive tasks. To highlight the basic dis-
tinction, the following section provides examples of popular 
learning tasks from cognitive psychology and compares them 
with nearly identical “self-directed” alternatives (see Table 1 
for a summary). As we highlight later in the review, even rela-
tively small changes to a learning task can have dramatic con-
sequences for what is learned and retained.

Memory encoding
One key element of classroom learning is memorizing new 
facts. In many contemporary laboratory tasks used to study 
memory, the experimenter determines the sequence and timing 

IN A NOT SO FAR OFF LAND...

EH ?

... REPEAT AD-INFINITUM

Fig. 1. An example of self-directed learning in everyday life. In the scene, a young child is flipping through 
the pages of a storybook. At some point, the child comes to a picture she finds interesting and requests the 
name of the object from the caregiver. A key feature of this example is that the learner herself, as opposed 
to the parent or teacher, controls the learning sequence through her choices and actions.

 at NEW YORK UNIV on September 6, 2012pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


466  Gureckis and Markant

of study items. In contrast, in a self-directed memory task, par-
ticipants make decisions about how to study a set of items in 
preparation for a future test. For example, learners might con-
trol a “window” that reveals individual items hidden within an 
array so that they can devote varying amounts of study time to 
different items (Voss, Gonsalves, Federmeier, Tranel, & 
Cohen, 2011). Similarly, researchers have examined self-
directed study time allocation in common educational scenar-
ios such as studying with flashcards (Kornell & Bjork, 2007; 
Kornell & Metcalfe, 2006; Metcalfe, 2002, 2009; Metcalfe & 
Kornell, 2003; T. O. Nelson & Narens, 1994). In both of these 
situations, the learner’s choices (rather than the experiment-
er’s) determine what is learned, how much time is spent per 
item, and the sequence of information presented. Note that in 
comparison to more recent approaches, early research on 
memory actually gave participants more control (e.g., when 
memorizing a list of words printed on paper, participants could 
decide how to allocate effort or study time to different ele-
ments). However, on the whole, study strategies or exploration 
behaviors are less frequently a focus of investigation in mem-
ory research.

Category learning
Category learning research aims to understand how people 
discover the natural grouping of objects into classes (e.g., 
learning that a particular group of four-legged animals are 
“dogs”). Category learning differs from memory tasks in that 

it examines not just the acquisition of new facts but the 
generalization of learned information to new situations  
(e.g., correctly classifying a completely novel dog). In the 
traditional “passive” version of a category learning task used 
in the laboratory, category members are sampled pseudo-
randomly from an experimenter-defined statistical distribution 
and presented one at a time (Ashby & Gott, 1988; Shepard, 
Hovland, & Jenkins, 1961). Of particular interest here is the 
fact that the learner has no control over the order or nature of 
the stimuli. In a self-directed learning task, subjects might be 
able to design category members they would like to learn 
about (Markant & Gureckis, 2010, 2012b) or query individual 
category members by pointing at them in an array. Such 
procedures are analogous to a child asking a parent whether an 
unfamiliar object is a “dog” rather than waiting for the parent 
to name it (see a related literature on question-asking behavior: 
Berlyne & Frommer, 1966; Chouinard, 2007; Kemler Nelson, 
Egan, & Holt, 2004; Mills, Legare, Bills, & Mejias, 2010). 
Self-directed learning procedures were common in early work 
on category acquisition (Bruner, Goodnow, & Austin, 1956; 
Huttenlocher, 1962), but such paradigms have attracted less 
overall attention despite their relevance to classroom learning 
(see Kornell & Bjork, 2007, for a review). A related approach 
is found in eye-tracking studies that have explored how 
learners visually scan various stimulus properties during the 
course of learning (Blair, Watson, Calen Walshe, & Maj, 2009; 
Rehder & Hoffman, 2005), although eye movements include 
both voluntary and involuntary components.

Table 1. Comparisons Between Traditional Experimental Tasks Used in Cognitive Psychology and Analogous Self-Directed 
Alternatives

Traditional cognitive task Self-directed alternative Additional measurements Example papers

Memory encoding: Individual 
list items are presented  
one at a time by the  
experimenter.

“Flash card” study: The par-
ticipant chooses the timing 
and ordering of each studied 
item.

Order, timing, and spacing of 
study decisions

Kornell and Metcalfe (2006); 
Metcalfe (2002); Voss, 
Gonsalves, Federmeier, 
Tranel, and Cohen (2011)

Category learning: Category 
exemplars are sampled ran-
domly from an experimenter-
defined distribution and 
presented one at a time.

Active category learning: 
The learner can point to 
particular items to query 
the category label or can 
“design” items to test.

Identity of queried exam-
ples, sequence of queries

Huttenlocher (1962); 
Markant and Gureckis 
(2010, 2012b)

Causal learning: Learners 
observe pairings between 
causal events and their 
consequences and use the 
observed contingencies to 
estimate causal strength.

Intervention-based causal 
learning: Learners actively 
design “experiments” or 
intervene on variables in a 
causal system then observe 
the consequences.

Pattern or sequence of 
interventions

Lagnado and Sloman (2004); 
Sobel and Kushnir (2006); 
Steyvers, Tenenbaum, 
Wagenmakers, and Blum 
(2003)

Decision making: Participant 
decides between a set of 
prospects that have been de-
scribed by the experimenter.

Active gathering of information: 
Incomplete information is 
given about each prospect 
and the decision maker must 
gather additional information 
via active information search.

Sequence of information 
search decisions, how 
much information is 
gathered prior to making 
a decision

Edwards (1965); Tversky 
and Edwards (1966); 
Hau, Pleskac, Kiefer, and 
Hertwig (2008); Juni, 
Gureckis, and Maloney 
(2011)
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Causal learning
Real world learning is not just about acquiring new facts or 
memories but often involves understanding the causal rela-
tions between events in the world. For example, a child might 
learn that medicine can get rid of a tummy ache, that heating 
up a liquid causes it to bubble, and that engaging in certain bad 
behaviors can cause an adult to get angry. In each of these 
cases, some event in the world (taking medicine, applying heat 
to a liquid, or behaving badly) causes certain other events. Phi-
losophers, statisticians, and psychologists often distinguish 
between correlation and causation and have noted that it is 
impossible to empirically separate these ideas without the 
ability to actively intervene on the environment (e.g., Mill, 
1843/1950). For example, although a child could observe that 
a sibling’s behavior is correlated with the mood of their parent, 
children can better establish which behaviors cause their par-
ent to get angry by themselves behaving in different ways in 
different situations and observing the resulting effects on their 
parent’s disposition. This type of learning is often referred to 
as intervention-based causal learning because the learner is 
intervening or manipulating a variable in the environment 
(their behavior) just as a scientist might manipulate an inde-
pendent variable in the design of an experiment.

A number of recent studies have explored the impact of 
active, intervention-based learning on causal learning in chil-
dren and adults (Gopnik et al., 2004; Lagnado & Sloman, 
2004; Rottman & Keil, 2012; Sobel & Kushnir, 2006; Steyvers, 
Tenenbaum, Wagenmakers, & Blum, 2003). In such tasks, par-
ticipants learn by interacting with an ambiguous system, set-
ting or manipulating variables and observing the effect these 
interventions have on other variables. For example, Sobel and 
Kushnir (2006) had adults interact with a virtual circuit board 
presented on a computer display. The circuit involved four dif-
ferently colored lights that were linked in various ways such 
that turning on one light caused other lights to turn on (the 
causal relationships were probabilistic). Learners experi-
mented with the system by setting various lights to the “on” or 
“off” state and observing the effect on other lights in the sys-
tem. Later, they were tested for their knowledge of the causal 
relationships between the lights. Effective learning in this task 
requires the learner to design informative interventions or 
“experiments” that provide information about the causal links. 
Similar tasks have a long history in the developmental litera-
ture (e.g., Kuhn & Brannock, 1977; Kuhn & Ho, 1980; Piaget, 
1930). At a fundamental level, these types of learning environ-
ments emphasize self-directed information gathering because 
the learner is in charge of which interventions to perform at 
each point in time. There is growing evidence that interven-
tions are planned specifically with the objective of acquiring 
useful information about causal structure (e.g., Schulz & 
Bonawitz, 2007; Steyvers et al., 2003). For example, Schulz 
and Bonawitz (2007) found that young children play more 
with a toy after being shown confounded information about 
how it works, suggesting that one goal of exploratory play is 
to reduce uncertainty about causal structure.

Gathering information for making decisions
A final domain that frequently involves a component of self-
directed information acquisition is decision making. In tradi-
tional decision-making tasks, individuals must choose 
between pairs of options that are described by the experi-
menter (e.g., “Would you prefer $5 now or $10 in two 
weeks?”). However, in order to make effective real-world 
decisions, people often have to first gather information about 
various options (e.g., Hertwig, Barron, Weber, & Erev, 2004). 
For example, when purchasing a car, a buyer might consult 
various resources concerning the reliability and pricing of dif-
ferent vehicles. In these cases, decision making is preceded 
by a period of self-directed information sampling (Edwards, 
1965; Gureckis & Markant, 2009, Hau, Pleskac, Kiefer, & 
Hertwig, 2008; Hills & Hertwig, 2010; Juni, Gureckis,  
& Maloney, 2011; Markant & Gureckis, 2012a; Todd & 
Dieckmann, 2005; Todd, Hills, & Robbins, in press; Tversky 
& Edwards, 1966).The key questions in this research are what 
information people sample prior to making a decision, how 
much information is needed before making a choice, and how 
information sampling influences later choices. Experimental 
techniques such as the Mouselab protocol (Payne, Bettman, 
& Johnson, 1993; Payne, Braunstein, & Carroll, 1978) or eye 
tracking allow detailed measurement of self-directed infor-
mation sampling prior to choice.

Isolating the Effects of Individual Choice 
and Control Through “Yoked” Designs
The previous examples clearly highlight how self-directed 
information sampling can alter the course of learning, but how 
can we tell whether it actually conveys advantages for acquir-
ing new knowledge? Isolating the contribution of individual 
choice to learning and memory requires establishing appropri-
ate experimental controls. One popular method is the use of 
“yoked” learning designs (see Huttenlocher, 1962, for an early 
example of this technique). In these experiments, one partici-
pant performs the task in a self-directed way, and the experi-
menter records the information that the learner requests or 
accesses. The same sequence of observations is then presented 
to another subject—the yoked control—who receives the 
same data passively (i.e., not under his or her control). Yoked 
learners experience a situation not unlike the main character in 
the movie Being John Malkovich, wherein they see the learn-
ing task through the “eyes” of another individual. By ensuring 
that there are no differences in the data experienced, differ-
ences in learning outcomes between these conditions help to 
highlight the effect of individual choice during learning (see 
Fig. 2).

However, a variety of factors suggest caution when interpret-
ing yoked learning studies. First, it must be considered whether 
the yoking design systematically disadvantages yoked learners. 
For example, the lack of control that yoked participants feel 
may be distracting and could interfere with learning indepen-
dently of their self-directed partner’s behavior. Alternatively, 
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whereas self-directed learners may be aware of the “next step” 
in the learning sequence as soon as they make a decision, yoked 
learners may lag behind when directing attention to new stimuli 
and preparing to learn. In addition, self-directed learners may be 
more engaged in a task relative to the yoked learner either 
because they are more physically active or because they are 
making more decisions. An important goal for yoked experi-
ment designs is to control for engagement and attention in order 
to isolate the specific aspects of self-directed decision making 
that affect learning.

A more interesting factor to consider is whether, despite 
equating the sequence of data, the usefulness of the information 
experienced is tied to the beliefs of the self-directed learner. In 
particular, self-directed learners may gather data that specifi-
cally tests a hypothesis they have in mind, leading to a more 
individually informative training experience. Because different 
individuals bring different background knowledge to a task, this 
divergence could result in yoked learners gaining less from the 
same sequence of observations. As discussed below, a key chal-
lenge for yoked experiment designs is to disentangle “data-
driven” processes from “decision-driven” processes that are 
involved in the act of gathering information.

A Cognitive Perspective on the Advantages 
of Self-Directed Learning
One reason cognitive scientists should be interested in  
self-directed learning is the fact that it is widely thought to 
improve learning, particularly in educational contexts. How-
ever, there is less understanding of why these benefits occur 
and considerable debate about the generality of such claims, 
particularly in the education literature (e.g., Klahr & Nigam, 
2004; Mayer, 2004). We will begin our review by laying out a 
number of contributing cognitive factors. Our synthesis draws 
from a broad set of disparate psychological literatures that 
have explored the interactions between learning and choice 
behavior.

Data-driven or informational explanations
Rather than being limited by the flow of information from pas-
sive experience, self-directed learners are free to choose which 
information they want to learn. For example, by preferentially 
selecting information that reduces their current uncertainty, 
people may be able to optimize their experience (e.g., avoid-
ing redundant data and focusing effort on parts of the environ-
ment that are not well understood). As a result, more can be 
learned with less training, because each experience is more 
useful or informative. For example, Markant and Gureckis 
(2010) found that when learning novel perceptual categories, 
participants who were free to query individual exemplars in a 
self-directed way outperformed participants who viewed 
examples that were randomly generated from a distribution 
(the typical setup in this kind of task). Analysis of self-directed 
participants’ information sampling decisions suggested that 
these individuals learned more quickly by avoiding redundant 
exemplars they were already able to confidently classify. Sim-
ilar patterns of uncertainty-driven information gathering have 
been observed in the exploratory play of young children 
(Schulz & Bonawitz, 2007).

As noted above, some types of information are accessible 
only via interaction with the environment. For example, as in 
science, if two variables are correlated (e.g., lung cancer and 
smoking), actively manipulating one variable and observing 
the effect is necessary to establish the direction of causality, 
thus providing information that is inaccessible using observa-
tion alone (Mill, 1842/1950; Pearl, 2000). Consistent with this 
perspective, a number of recent human studies have found 
learning advantages for intervention-based learning in causal 
settings (Lagnado & Sloman, 2004; Sobel & Kushnir, 2006; 
Steyvers et al., 2003). In these cases, self-direction can be 
viewed as providing not just “better” data than passive learn-
ing but fundamentally distinct information that supports stron-
ger inferences.

Self-directed information sampling can strongly shape our 
knowledge about the world. As a familiar example from social 

Self-Directed Learner Yoked Learner

Fig. 2. A simple approach to yoked studies uses two computers that display identical 
information. As the self-directed learner interacts with the task on the host computer, a 
yoked participant seated in another room attempts to learn from the same display without 
the advantage of control.
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psychology, if an individual interacts with others only follow-
ing a positive social experience, this will result in more infor-
mation about friends and biased information about others 
(because initial negative impressions are never corrected; 
Denrell, 2005; Fazio, Eiser, & Shook, 2004). Biased data gath-
ering may underlie a variety of other cognitive biases, such as 
risk aversion (Denrell, 2007; Hertwig et al., 2004; March, 
1996), overconfidence (Juslin, Winman, & Hansson, 2007), 
and illusory correlation perception (Fiedler, 2000). Indeed, 
psychologists are increasingly finding that interactions 
between choice behavior and learning have broad implications 
for many areas of knowledge representation, learning, and 
decision making (Fiedler & Juslin, 2006).

Effort or encoding optimization
Similar to the advantage of collecting data to test different 
hypotheses, self-directed learning allows people to decide 
how to study a set of material to maximize retention. Metcalfe 
and colleagues have examined how people allocate study 
effort across materials of varying difficulty in preparation for 
future memory tests (Metcalfe, 2002; Metcalfe & Kornell, 
2003; Son & Kornell, 2008; Son & Metcalfe, 2000; see also 
Dunlosky & Hertzog, 1998; T. O. Nelson & Leonesio, 1988). 
One hypothesis is that materials or concepts just beyond the 
grasp of the learner are most amenable to learning (similar to 
Vygotsky’s [1987] “zone of proximal development”). Consis-
tent with this view, study time allocation research has found 
that learners often allocate the most effort to easier items and 
progress to harder items only later in a study session, particu-
larly when given limited study time. For example, Metcalfe 
(2002) had people learn Spanish–English word pairs that were 
easy (e.g., “fantastico”–“fantastic”), medium, or hard (e.g., 
“chafarrinada”–“stain”). Rather than devote time to the most 
difficult pairs, participants focused on items of easy and 
medium difficulty that could be learned in the brief amount of 
study time available. Formal analyses suggest that such strate-
gies are more effective for optimizing memory performance 
because starting with the most difficult items may mean fewer 
total items are successfully encoded (Atkinson, 1972a, 1972b; 
Son & Sethi, 2010).

Even when the set of material to be learned does not vary 
dramatically in difficulty, making decisions about the timing, 
spacing, and order of information experienced may enhance 
encoding. In a spatial memory task in which the goal was to 
memorize grids of commonplace objects, Voss et al. (2011) 
reported that individuals who controlled the time spent study-
ing each item and the order visited (using a joystick) had supe-
rior memory at test compared with “yoked” individuals  
who viewed a replay of another subject’s active scan path. In 
this study, self-directed encoding was also associated with 
increased coordination in cortico-hippocampal activity com-
pared with the yoked control (assessed using fMRI), suggest-
ing that self-directed study enhances neural processes related 
to successful encoding. Some of the observed benefits in this 

task may also result from the link between the data experi-
enced by learners and their current knowledge state (Atkinson, 
1972b; Kornell & Metcalfe, 2006). For example, if a partici-
pant has prior experience with a particular object in the array, 
this may facilitate learning on the initial exposure and lead to 
avoiding that item in subsequent study opportunities. The 
same object may be less familiar to a yoked participant and 
thus would benefit more from repeated study.

Although these studies demonstrate potential benefits of 
self-directed study, other work suggests that people often fail 
to account for properties of their own memory when selecting 
study strategies. For example, memory is typically better for 
items that are spaced (i.e., repeated study events are distrib-
uted in time) rather than massed (i.e., study events occur 
repeatedly in close succession; Dempster, 1989; Glenberg, 
1979). However, people often fail to take advantage of this 
effect when deciding how to study. For example, people 
believe that massed practice is a more effective learning mode 
(Kornell & Bjork, 2008; Simon & Bjork, 2001) and when 
given the opportunity prefer to mass practice difficult items 
and space easy items (Son, 2004, although see Son & Kornell, 
2009, for a counterexample). Taken together, however, work 
in this area strongly suggests that even memory encoding—a 
mental function typically viewed as passive or automatic—
might be better understood as involving some component of 
active, strategic choice.

Inductive inference and sampling assumptions
In addition to modifying the flow of experience, knowledge 
about the way information was gathered may influence learn-
ing and generalization. For example, Xu and Tenenbaum 
(2007) explored how children generalize words to novel objects 
(see also Gweon, Tenenbaum, & Schultz, 2010; Rhodes,  
Gelman, & Brickman, 2010). In one condition, a set of four 
novel objects was verbally labeled by a knowledgeable teacher 
(i.e., the experimenter), whereas in the other condition the same 
four objects were labeled after the children themselves pointed 
to them and requested their label (i.e., a self-directed condition; 
see Figure 3 for an illustrative example). In this study, children 
made more restrictive generalizations of word labels (i.e., only 
to other nearly identical items) when examples were selected 
and labeled by a teacher, compared with when they selected 
examples themselves, even though the final information con-
veyed in both conditions was identical.

One explanation of this finding is that children inform their 
generalizations with knowledge of how data was generated or 
gathered. Such sampling assumptions have been a topic of 
extensive discussion both in machine learning (Mitchell, 1997) 
and psychology (Griffiths & Tenenbaum, 2001; Shepard, 1987; 
Tenenbaum, 1999). Under “strong” sampling, training exam-
ples are selected from the space of items that fall within the 
target concept. This assumption may be appropriate when the 
process by which examples were collected is selective, such as 
being picked by a helpful and knowledgable teacher (Xu & 
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Tenenbaum, 2007). This is also consistent with ideas of peda-
gogical or intentional sampling (e.g., Gweon et al., 2010; Shafto 
& Goodman, 2008; Shafto, Goodman, & Frank, in press). The 
assumption of strong (or pedagogical) sampling allows more 
restrictive generalization from smaller sets of examples. How-
ever, the strong sampling assumption may be inappropriate 
when information is gathered independently of the target con-
cept (such as when samples are gathered randomly or by a self-
directed learner who is ignorant of the true pattern). In these 
cases, self-directed learners might at first default to a “weak” 
sampling assumption. Weak sampling implies less restrictive 
generalization because the sampling process itself conveys no 
information about the to-be-learned concept. These ideas have 
been formalized within a Bayesian learning framework that suc-
cessfully explains human inference and generalization across a 
variety of situations (Griffiths & Tenenbaum, 2001; Tenen-
baum, 1999). Critically, this line of work shows that even in 
cases where two people experience identical information, learn-
ing may depend on the role of each individual in gathering it.

Decision-driven explanations
Independent of different data or sampling assumptions, the 
very act of planning interventions or deciding which informa-
tion to collect may necessitate a more thorough evaluation of 
the problem structure and of how observed experience relates 
to different hypotheses (Bruner, 1961). Sobel and Kushnir 
(2006) showed that learners who designed their own interven-
tions on a causal system learned better than yoked participants 
who either passively observed the same sequence of actions or 
re-created the same choices made by others (see also Markant 
& Gureckis, 2010; Steyvers et al., 2003). Because the data 
experienced by both groups is identical, “yoked” learning 
studies such as these isolate the influence of individual choice 
from differences in information.

As mentioned earlier, enhanced memory under volitional 
memory encoding has been associated with greater coordina-
tion across a network of brain regions involved in executive 
control, attention, and memory encoding (Voss et al., 2011). 
However, further work is needed to determine how different 
components of self-directed decision making contribute to this 
effect. For example, deciding what to study often relies on a 
metacognitive judgment about what has already been learned, 
an introspective process that can enhance memory indepen-
dently of any further study (Kimball & Metcalfe, 2003). Even 
in the absence of such metacognitive monitoring, however, 
learning may be enhanced by basic processes related to mak-
ing decisions. Explanations for such decision-driven advan-
tages include the psychological benefits of free choice (Leotti, 
Iyengar, & Oshsner, 2010), greater engagement with the learn-
ing task, and memory enhancements related to active explora-
tion (Kaplan et al., 2012).

It is important to note that decision-driven effects may also 
interact with the data-driven differences described above. For 
example, as argued in Markant and Gureckis (2010), self-
directed learners can select information that would test the set 
of hypotheses they are currently entertaining whereas yoked 
participants (who may be considering different hypotheses 
about a task) may gain less from the same sequence of data. 
Markant and Gureckis described a simple computational 
model that accounts for self-directed learning advantages in 
terms of the congruence between experienced data and the 
knowledge held by the individual.

In summary, self-directed sampling does not appear to sim-
ply be a special case of passive learning in which an action is 
first required by the learner but may have broad implications 
both for what is learned and what is learnable. In particular, 
self-directed information sampling appears to improve the rate 
of learning and the fidelity of memory, can reveal novel or 
useful information about the structure of the environment, can 

Self-Directed
Sampling

Teacher-Led, Pedagological
Sampling

Fig. 3. An illustrative example that conceptually matches the task used by Xu and Tenenbaum 
(2007). At left is a bucket of different colored balls. In one scenario, a knowledgeable teacher 
picks out four red balls and labels each a “Dax” (middle). In the second scenario (at right), 
the learner herself picks up four balls from the bucket that just happen to be red and learns 
via feedback that all four objects are called “Dax.” The learner may then be asked whether 
the label “Dax” should also apply to other balls in the bucket that are not red. Different 
inferences in these two scenarios might stem from the learner’s assumptions about the 
process that gathered the examples.
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influence patterns of inference and generalization, and can 
alter subsequent decision-making strategies.

Curious Machines:  A Computational 
Perspective on Self-Directed Learning
Paralleling this psychological literature are recent develop-
ments in machine learning under the name “active learning.” 
Unlike traditional learning models that involve passively fed 
training data, this work has explored algorithms that gather 
their own training data (see Settles, 2009 or Sutton & Barto, 
1998, for reviews). For example, consider the document clas-
sification problem confronting many Internet search engine 
companies in which data (e.g., Web pages, videos) are nearly 
infinite, but obtaining information about the content of each 
document may involve costly human operators. Such prob-
lems are analogous to the data-rich, instruction-sparse envi-
ronments that confront a young child. In these cases, it would 
be ideal if the classifier system could make intelligent deci-
sions about which information is expected to be nonredundant 
and request additional information for only those items. This 
motivation has been used to develop “curious” machine learn-
ers that can perform as well as passive approaches but with 
less training. Such techniques have been recently applied to a 
wide range of learning problems, including sequential deci-
sion making (i.e., reinforcement learning), causal learning, 
and categorization.

The formal methods developed in this line of work have the 
potential to make important contributions to research on 
human learning. First, research in this area has attempted to 
formally delineate the tasks and environments in which self-
directed sampling may result in improvements in learning  
efficiency (Angluin, 1988; Cohn, Atlas, & Ladner, 1994; Das-
gupta, Kalai, & Monteleoni, 2005). Typically these analyses 
take the form of mathematical proofs establishing the best- 
and worst-case advantages for various information-gathering 
strategies and learning models. To the degree that the abstract 
properties of the tasks and models studied in this literature can 
be mapped on to educationally relevant learning tasks, such 
analyses may offer insight into which environments are best 
suited for self-directed learning. Second, this work has empha-
sized how self-directed information sampling might be com-
bined with other types of learning (such as unsupervised 
learning; Dasgupta, 2010). Finally, research in this area has 
designed “sampling norms” or choice utility functions that 
assign value to future observations on the basis of their poten-
tial for revealing information (MacKay, 1992; Seung, Opper, 
& Sompolinsky, 1992). Such proposals provide a framework 
for studying how humans evaluate different sources of infor-
mation and make sampling decisions.

It is also possible to use the pitfalls from the machine learn-
ing literature to better understand the limitations of self-
directed learning as a pedagogical strategy. For example, a 
well-recognized weakness of many active learning algorithms 
is that if the learning model is incorrectly specified for the 

domain (i.e., the space of possible hypotheses or representa-
tions within the model does not encompass the to-be-learned 
concept or assigns it a very low a priori probability), the infor-
mation samples acquired will be severely biased (MacKay, 
1992). This may result in a nefarious feedback loop in which 
an incorrect early impression of a problem leads to biased 
information gathering, which in turn reinforces or fails to cor-
rect early impressions, similar to confirmation bias in human 
psychology (Nickerson, 1998; Wason, 1960). In this instance, 
something that might at first seem like an “irrational” bias on 
the part of a learner may instead be thought of as a misspeci-
fied model of the learning task or environment.

In addition, the focus on minimizing costs or uncertainty in 
artificial systems may fail to capture the information that is 
most useful for human learners. For example, active machine 
classifiers often preferentially explore the boundaries of a con-
cept (i.e., the “margin”), but the same borderline cases may be 
less useful to a human learner because they are the ones most 
likely to be associated with inconsistent feedback (Ashby, 
Boynton, & Lee, 1994). In one example, Lang and Baum 
(1992) developed a handwritten digit recognition system that 
could synthesize novel characters and could ask a human ora-
cle for feedback. The system quickly began testing borderline 
examples that were difficult for the human assistant to classify 
(e.g., those that resemble both a “3” and an “8”), leading to 
inconsistent trial-to-trial feedback that confused the system. 
Although borderline or ambiguous items may be highly valu-
able in terms of information, they can often be nonrepresenta-
tive of the overall concept. However, human learners often 
benefit from training on mixtures of extreme, typical, and bor-
derline examples (Avrahami et al., 1997; Clapper & Bower, 
2002; Elio & Anderson, 1984; see also Dasgupta, 2010, for a 
discussion in the context of machine learning). One interesting 
question is whether human learners themselves prefer to 
gather information that is representative or primarily diagnos-
tic of a target concept (e.g., G. L. Murphy & Ross, 2005). 
These issues become particularly important when evaluating 
whether these machine learning algorithms might be used as 
assistive training tools for human learners.

Overall, this area of machine learning research shares many 
of the same goals as research on self-directed learning in 
humans and provides a useful set of formal tools for analyzing 
such behaviors. In the following section, we highlight three 
examples in which analyses of learning tasks with machines 
have shown advantages for self-direction, and we attempt to 
distill relevant psychological insights.

Example 1: Active sampling for generalization
As noted earlier, in data-rich, feedback-sparse learning envi-
ronments, it is beneficial to maximize the informativeness of 
each training experience. Machine learning researchers have 
repeatedly shown that learning algorithms that can strategi-
cally select their own training data can reduce the number of 
training exposures needed to reach a particular level of error 
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compared with equivalent models without this capability  
(e.g., Angluin, 1988; Castro et al., 2008; Cohn et al., 1994; 
Dasgupta, 2010; Dasgupta et al., 2005; Lang & Baum, 1992; 
MacKay, 1992; K. P. Murphy, 2001; Seung et al., 1992; Tong 
& Koller, 2001). One way to quantify the advantages of self-
directed learning is depicted in the so-called banana curve, 
which plots expected accuracy as a function of the number of 
training trials (analogous to a standard human learning curve; 
see Fig. 4, left panel). The difference between the curves 
shows the advantage given by active, self-directed learning 
over the passive training sequence. The characteristic pattern 
is that self-directed learning can lead to similar levels of per-
formance with less training even within the same learning 
architecture. For example, in Figure 4 (left panel), the self-
directed model needs only one third as much training to 
achieve the same level of performance as the passive model.

The following example provides some intuition for why 
this works (Dasgupta, 2010; Settles, 2009). Consider a simple 
unidimensional classification task in which the goal is to accu-
rately estimate some unknown threshold, θ, below which 
items are in Category A and above which items are in Cate-
gory B (e.g., learning the building height at which a structure 
becomes a “skyscraper”). If the acceptable error in our esti-
mate of the true threshold is ε, formal learning theory shows it 
is enough to “passively” sample O(1/ε) random (uniformly 
distributed) training items with labels (Valiant, 1984).1 In this 
case, more data help better identify the threshold, but many of 
those observations will be uninformative (the threshold always 
will lie between the tallest negative example of a skyscraper 
and the shortest building called a skyscraper). Instead, if we 
can query particular items (e.g., ask questions about buildings 

at a specific height), the threshold estimation problem becomes 
equivalent to a binary search (dividing the remaining search 
interval in half with each query) and error ε can be achieved 
with O(log(1/ε)) queries, an exponential reduction in the num-
ber of labeled examples. In other words, an idealized learner 
would be much faster by asking targeted questions than by 
randomly sampling examples to query. Recent studies of self-
directed category learning show similar advantages for human 
learners (Castro et al., 2008; Markant & Gureckis, 2010). 
What is important is that these analyses highlight how advan-
tages for self-directed learning might arise simply as a conse-
quence of effective information gathering, independent of 
deeper encoding or attentional effects.

The extension of this basic idea to more complex learning 
tasks has been established in numerous domains (Settles, 
2009). Of course, not all problems reduce to simple threshold 
estimation. Typically, in more complex learning problems, 
decisions about the potential value of new observations are 
based on the current “beliefs” of the learning agent. For exam-
ple, the learning system might request the label for items that 
it is more uncertain about how to classify (a bit like asking for 
help). This uncertainty can be quantified or computed in vari-
ous ways. For example, one way to make information sam-
pling decisions is to maintain a “committee” of different 
hypotheses or mental models of the situation and to use the 
disagreement among them as a measure of potential for infor-
mation (cf. Seung et al., 1992). The intuition is that disagree-
ment between the various hypotheses are places in which 
targeted information would be most helpful. This idea has a 
long history in the philosophy of science wherein “crucial 
experiments” that decide between alternative theories should 
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Fig. 4. Left: Example of a “banana curve” typical of computational active learning applications. The curves compare expected error as a function 
of training episodes for both self-directed and passive learners (Settles, 2009). Uncertainty-driven self-directed sampling can often achieve the 
same classification performance with an order of magnitude of less training. For example, the passive learning algorithm reaches asymptote at 
Trial 300, whereas the self-directed learning algorithm reaches a similar point at Trial 100 (one third as much training). Middle: The top row shows 
three possible causal relationships between a set of three variables (X, Y, Z). The arrows indicate the direction of causality (e.g., in Structure 1, 
X causes both Y and Z). The structures are grouped with a dotted line reflecting Markov equivalence classes. Structures grouped in a Markov 
equivalence class are indistinguishable by passive observation alone (e.g., ignoring time, the pattern of resulting effects for 1 and 2 are identical). 
However, by actively intervening on the variables, the learner can disambiguate the causal structure. The bottom row shows a set of possible 
interventions on the structure (the hand represents a variable whose value is set by the learner; the variables with stars are “turned on” following 
the intervention). In the first example, the learner manipulates X and finds that both Y and Z turn on. As a result, the learner might rule out 
Structure 3 (for simplicity, assume deterministic causes and no background causes). In contrast, in the second example, the learner manipulates 
the value of Y and observes that only Z turns on. This effectively rules out Structure 1. Right: The explore–exploit dilemma. Two options are 
available with known values, but a third has not been sampled. The learner must decide whether to “exploit” the known source of reward (the 
path leading to the $10 option) or to “explore” the unknown and potentially more valuable option leading to the question mark.
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allow more effective discovery (Bacon, 1620/1902; Platt, 
1964; Popper, 1935/1959). Such uncertainty-driven informa-
tion sampling also has a natural framing in information- 
theoretic terms using concepts like entropy or Kullback-
Leibler divergence (MacKay, 1992), ideas that closely parallel 
early work on hypothesis testing and information selection in 
cognitive psychology (Oaksford & Chater, 1994). One major 
difference is the scale at which these approaches may apply. 
Early work on hypothesis testing in psychology considered 
tasks where there were only a few possible hypotheses, 
whereas recent work in machine learning applies to real-world 
problems with possibly millions of alternative hypotheses.

In summary, recent machine learning research provides 
quantitative support for the idea that active information selec-
tion can improve the rate of learning and generalization. In 
addition, research in this area has explored formal ways a 
learning agent might assign value to future information sam-
ples on the basis of the agent’s current uncertainty. Each of 
these advances go beyond early work on hypothesis testing in 
cognitive psychology while potentially providing novel 
insights into self-directed learning in humans.

Example 2: Intervention-based causal learning
Self-directed learning can also be critical in the discovery of 
causal relations. As described above, causal relationships 
establish which variables or events in the world are the conse-
quence of other variables or events (e.g., do cell phones cause 
cancer?). The top row of Figure 4 (middle panel) shows three 
possible causal relationships between a set of simple variables. 
To make the discussion concrete, Variable X might represent 
“cell phone usage,” Variable Y might be “industrial chemicals 
production,” and Variable Z might represent “cancer rates.” 
Structure 1 thus represents a scenario in which cell phones 
cause both industrial chemicals and cancer (a common cause 
structure). Structure 2 represents the causal relation in which 
cell phones cause the production of industrial chemicals, 
which in turn cause cancer (a causal chain). Ignoring temporal 
ordering, these two structures (1 and 2) are indistinguishable 
through observation alone because both produce a pattern of 
intercorrelation between the variables X, Y, and Z (i.e., 
increases in cell phones usage will be associated with increases 
in chemicals and cancer). Formally speaking, these two struc-
tures represent a “Markov equivalence class” (Pearl, 2000). 
However, a learner who actively intervenes on the system by 
fixing the value of different variables can begin to disambigu-
ate the causal structure (see bottom row of Fig. 4, middle 
panel). For example, after “manipulating” or “experimenting” 
with Variable Y and observing no effect on Z (independent of 
the possible base-rate occurrence of Z), the learner can rule out 
the causal chain structure. Active, intervention-driven causal 
learning can be viewed as a form of uncertainty reduction 
within the space of possible causal models that might relate 
the variables. In Bayesian terms, each possible causal struc-
ture in the top row of Figure 4 (middle panel) might represent 

a hypothesis, and the goal is to reduce the uncertainty about 
the true structure by making maximally informative interven-
tions. In machine learning, computational systems have been 
developed to predict which intervention or experiment to  
perform in order to best learn about the causal system (K. P. 
Murphy, 2001; Tong & Koller, 2001). Such approaches may 
greatly inform our understanding of how people interact with 
causal systems in order to learn. For example, Steyvers et al. 
(2003) compared a similar model with the behavior of human 
participants in an intervention-based causal learning task and 
found that human intervention decisions were well predicted 
by the goal of reducing entropy (i.e., uncertainty) over the 
space of possible causal models.

Example 3: Exploration–exploitation trade-offs 
and learning from reinforcement
Active information acquisition also figures prominently in 
theories of computational reinforcement learning (CRL;  
Sutton & Barto, 1998). In CRL, learning is viewed as an 
attempt to maximize the reward that an agent can receive from 
its environment.2 In pursuit of this goal, learners must exploit 
resources that are known to be productive (Fig. 4, right panel). 
However, given that the full distribution of rewards in the 
world is usually unknown, agents must balance the desire to 
exploit options that have been productive in the past with the 
need to explore (i.e., gather information about) relatively 
unknown outcomes. For example, imagine trying to decide the 
best restaurant at which to eat in a large city. Often we face a 
dilemma in that we could continue eating at our local favorite, 
but are always unsure whether a better restaurant exists nearby. 
Thus, our challenge is to balance the desire to “exploit” options 
that are known to be good against possible gains from “explor-
ing” (i.e., sampling) new alternatives.

Outside of a few domains (Gittins & Jones, 1979), the opti-
mal solution to this exploration–exploitation trade-off is com-
putationally intractable. As a result, many CRL algorithms 
developed in machine learning assume that learners engage in 
stochastic, random exploration (e.g., the “Softmax” rule pro-
posed by Sutton & Barto, 1998), and this default assumption 
often carries over into human research that uses CRL as a the-
oretical model of human learning (Daw, O’Doherty, Seymour, 
Dayan, & Dolan, 2006).

However, other CRL research has considered alternative 
exploration strategies, such as “novelty bonuses,” which 
reward selections of actions that have not been sampled 
recently (Kakade & Dayan, 2002) or which use cumulative 
absolute prediction error as a signal for guiding exploration 
(Schmidhuber, 1991). The intuition is that exploration should 
be devoted to areas of the environment that are unfamiliar or 
have not been sampled recently (especially when the environ-
ment is continually changing). Consistent with these ideas, 
there is evidence that novelty may serve as a neurobiological 
signal that engages exploratory behaviors in human learners 
(Wittmann, Daw, Seymour, & Dolan, 2008). Alternatively, 
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prediction error (i.e., the inability to correctly predict out-
comes) can be a signal about the need for additional learning 
about particular parts of the environment. For example, if a 
person frequently has unpredictable eating experiences at Ital-
ian restaurants, it could be a cue that more learning is needed 
about this category of restaurant. An agent that can monitor its 
own prediction failures (a type of “metacognition” or perfor-
mance monitoring) can use this information to guide explora-
tion. Alternatively, at some point, the learner might decide that 
the variance in Italian restaurants in irreducible (i.e., it is due 
to intrinsic variability of the restaurants rather than a lack of 
understanding; see Yu & Dayan, 2003, for a discussion of 
expected and unexpected uncertainty). Finally, exploration 
may also be allocated to reduce uncertainty about the possible 
states of the environment as in the active learning and causal 
learning research discussed above (Kaelbing, Littman, &  
Cassandra, 1998).

Open Questions and Future Challenges
We conclude our review by discussing some of the open ques-
tions and future challenges confronting the study of self-
directed learning.

How do people make information  
collection decisions?
Relative to what is known about how people make decisions in 
economic contexts, the question of how people make decisions 
in order to gain information is less well understood. As outlined 
above, there are a variety of ways that human learners might 
evaluate the potential information content of future observa-
tions. At one extreme, human information sampling behavior 
could be effectively random or loosely guided by past experi-
ence (i.e., stochastic exploration, as in Sutton & Barto, 1998). 
Conversely, information sampling decisions could reflect a 
belief-driven process that gathers specific information in an 
attempt to reduce uncertainty (Knox, Otto, Stone, & Love, 
2012; Kruschke, 2008; J. D. Nelson, 2005; J. D. Nelson,  
McKenzie, Cottrell, & Sejnowski, 2010; Steyvers et al., 2003) 
or costs (Gureckis & Markant, 2009; Juni et al., 2011).

A key focus of ongoing research is to better distinguish 
these alternatives. For example, recent work by Nelson and 
colleagues has looked for an information sampling “norm” 
that best describes human information search in a variety of 
tasks (J. D. Nelson, 2005; J. D. Nelson et al., 2010). Many of 
these information sampling norms parallel those developed in 
the machine learning and statistics research on active informa-
tion sampling. Markant and Gureckis (2012b) examined self-
directed learning in a relatively complex rule learning task that 
gave participants the ability to “design and test” stimuli they 
wanted to learn about. On a subset of trials, participants were 
asked to report their uncertainty about how to classify the item 
they had just designed. Using a computer model-based analy-
sis, we found that people tended to prefer testing items that 

discriminated between two hypotheses or categories at a time 
rather than information that reduced the “global” uncertainty 
across all categories (somewhat related to Tweney et al.’s 
[1980] observation that people are effective at testing between 
two alternative hypotheses). The models tested in Markant and 
Gureckis (2012b) were motivated by various information sam-
pling norms originally proposed in the machine learning liter-
ature (Settles, 2009). Relatedly, Kincannon and Spellman 
(2003) showed that people prefer gathering different kinds of 
evidence when generalizing a hypothesis to all members of a 
category compared with limiting a hypothesis to only mem-
bers of a category, suggesting that framing effects may also 
influence information sampling. Of course, a further challenge 
is that people might use multiple strategies or sampling norms 
at various stages of learning. Developing a complete account 
of human information sampling behavior will thus require a 
fuller understanding of how basic drives (like curiosity or nov-
elty preferences; e.g., Berlyne, 1960) interact with belief-
driven, uncertainty-reducing sampling processes.

Contemporary machine learning research and computa-
tional modeling may prove critical in answering these ques-
tions. For example, one lesson from the machine learning 
literature is that understanding what information an agent will 
seek at any point in time requires a moment-to-moment model 
of the agent’s current state of knowledge or belief. Along these 
lines, we have attempted to fit learning and decision models to 
the trial-by-trial information gathering decisions of human 
participants (Gureckis & Markant, 2009; Markant & Gureckis, 
2012a). By tracking the learning sequence for each participant 
(along with a plausible model of how people update their 
beliefs), these models may allow for a stronger test of various 
hypotheses about how people evaluate the potential informa-
tion to be gained from future observations.

What environments are most likely to show 
advantages for self-directed learning?
Interfaces between basic cognitive research and machine 
learning may provide insight into which tasks or environments 
are best suited to self-directed learning (an issue with implica-
tions for education policy). As one example, Markant and 
Gureckis (2010) examined self-directed learning across a vari-
ety of different category structures. They found that partici-
pants’ prior biases about the target structure strongly guided 
their search behavior and that self-directed learning was most 
effective when a participant’s prior hypothesis space was con-
gruent with that of the target concept. These results echo 
research in machine learning that suggests that active informa-
tion sampling is less effective when the learner’s hypothesis 
space does not encompass the target concept or assigns it a low 
probability of being correct (MacKay, 1992). These results 
highlight a potential paradox. If people (or machines) use their 
current beliefs or understanding to drive their information 
acquisition, and those beliefs are incorrect, sampling will tend 
to be biased and learning will suffer. In the most extreme case, 
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if the learner has no way to represent a particular concept, then 
there is no way that self-directed learning will lead them to 
“discover” it, and their information gathering decisions will 
appear consistently suboptimal.

Predicting whether a particular problem is amenable to 
self-directed learning thus depends critically on an under-
standing of the learner’s representation of the task. In particu-
lar, self-direction is likely to speed learning in situations in 
which there is a large space of possible things to learn but the 
learner has a proper understanding or representation of this 
space. A failure of self-directed learning may reflect errors in 
the learner’s conception of the problem domain rather than 
poor information gathering. The critical question is thus 
whether self-directed learning allows people to overcome 
default strategies and prior biases when required by the prob-
lem they face. Such analyses may help to predict when self-
directed learning will be more effective when used in concert 
with other instructions methods. For example, situations in 
which a teacher provides helpful or informative examples can 
correct early misconceptions, help elaborate the space of con-
cepts or stimulus properties that are relevant, and then allow 
more effective self-directed learning within that space. Such 
ideas have interesting parallels with the tension between 
“direct instruction” and “discovery learning” in the education 
literature (e.g., Klahr & Nigam, 2004).

Coming from a memory optimization perspective, Son and 
Sethi (2010) presented a mathematical analysis of learning 
environments in which adaptive allocation of effort is most 
likely to lead to more effective learning. They pointed out that 
the effectiveness of various self-directed study-time allocation 
strategies depends critically on the “uptake” function that 
relates time spent studying to performance. Figure 5 shows 
two example functions. The first (denoted by the solid line) 
shows an item for which time spent studying monotonically 
increases memory strength (a concave function). The second 
(denoted by the dashed line) shows an item for which early 
effort results in little performance changes, but after a certain 
threshold of effort, large gains are realized (an S-shaped 

function). These differences might be related to the nature of 
the material being studied (some information one struggles 
with for some time before it starts making sense). One study 
strategy a learner might adopt is to allocate effort to items that 
seem to be returning the greatest improvement in competence 
per unit time spent. For environments in which the update 
function is nonconcave (e.g., S-shaped), this particular strat-
egy will tend to neglect poorly learned items (particularly 
those for which an additional “investment” of study time is 
needed to increase the rate of learning, as in the dotted line in 
Fig. 5). As a result, self-directed study time allocation will 
tend to be suboptimal in environments that contain items with 
this property. Research on this question is undoubtedly in an 
early stage, but the potential payoff is a better understanding 
of how learning strategy (self-directed or passive) interacts 
with the informational structure of learning problems.

A unified view of self-directed learning
Despite the many advantages described in this review, self-
directed learning can also lead to many learning disadvantages 
(a point gathering renewed attention in education; Mayer, 2004). 
For example, a now famous quote from Atkinson (1972a) reads:

One way to avoid the challenge and responsibility of 
developing a theory of instruction is to adopt the view 
that the learner is the best judge of what to study, when 
to study, and how to study. I am alarmed by the number 
of individuals who advocate this position despite a great 
deal of negative evidence. My data, and the data of oth-
ers, indicate that the learner is not a particularly effec-
tive decision maker. (p. 930)

This observation is echoed in the extensive work showing 
that people are often biased in how they select new informa-
tion when learning (e.g., failing to differentiate between infor-
mation that would confirm or disconfirm their current beliefs; 
Klayman & Ha, 1987; Skov & Sherman, 1986; Wason, 1960). 
Biased information collection can skew understanding about 
true patterns in the environment and may underlie a variety  
of cognitive biases (Denrell, 2007; Fiedler, 2000; Fiedler & 
Juslin, 2006; Hertwig et al., 2004; Juslin et al., 2007; March, 
1996). In addition, people frequently exhibit metacognitive 
illusions (e.g., Koriat & Bjork, 2005, 2006) that can lead to 
deficiencies in self-directed learning. For example, students 
often confuse the sense of perceptual fluency gained from 
massed practice with true long-term learning, leading to sub-
optimal preferences for massed practice over spaced practice 
(Son & Kornell, 2009).

How do we reconcile all these potential disadvantages for 
self-directed learning with the results reviewed in this article 
suggesting the opposite? We argue that research on this topic 
may benefit from a more unified theoretical perspective 
offered by the parallel work in machine learning. Leveraging a 
computational-level understanding of these basic issues has a 
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Fig. 5. Two learning tasks that vary in the function relating time spent to 
competence (modeled after Son & Sethi, 2010). In the solid curve, early 
time investments lead to immediate gains in competence. In the second 
environment (dotted line), there is an S-shaped curve such that early time 
investment leads to small gains, but larger gains are experienced later.

 at NEW YORK UNIV on September 6, 2012pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


476  Gureckis and Markant

number of advantages. To date, the field has yet to arrive at a 
comprehensive understanding of when self-directed learning 
will or will not succeed. For example, although in some situa-
tions people show a robust tendency to seek confirmation, 
other work has found evidence that people seek disconfirma-
tory evidence (e.g., Gorman, Stafford, & Gorman, 1987;  
Markant & Gureckis, 2010; Nelson et al., 2010). Up to this 
point, it has been difficult to integrate these disparate results 
independent of the specific task or context in which behavior 
has been studied. In contrast, computational models can poten-
tially expose general principles of learning that apply across 
many situations. In addition, although the tasks considered in 
this review are relatively simple, the applications of the 
machine learning approaches have extended to complex, real-
world problems. This suggests that aspects of the theoretical 
approach may scale gracefully beyond laboratory tasks.

From self-directed learning to assistive training
Given that people are not always optimal self-directed learn-
ers, one promising avenue for future research is to use insight 
gained from the study of active information sampling (in both 
human and machines) to develop assistive training methods. 
Instead of predicting what information people will choose on 
their own to solve a task, cognitive models can be used to 
determine what information would be most helpful to the indi-
vidual (given the nature of the task and measures of prior 
learning). This inversion of formal models into an assistive 
learning device may help shortcut the time required to develop 
perceptual or conceptual expertise in a domain and may be 
used to tailor learning experiences to the strengths and weak-
nesses of the individual learners (an approach that has been 
used with some success in the memory literature; Atkinson, 
1972a, 1972b; Pavlik & Anderson, 2008). For example,  
Atkinson (1972b) compared recall performance for a set of 84 
German–English vocabulary translations following three dif-
ferent study techniques: a self-directed condition in which par-
ticipants made their own choices about which pair to study on 
each trial, random selection of study pairs, and a model-based 
optimization technique that attempted to predict at each point 
in time which study item would maximize the number of “per-
manently learned” items. The finding was that the model-
based adaptive training technique led to better subsequent 
memory than the other two strategies (79% recall for the 
model training sequence versus 58% recall for self-directed 
decisions). Similar gains have been demonstrated by Pavlik 
and Anderson (2008) using the ACT-R model of memory. 
Relatedly, Castro et al. (2008) reported faster learning of a 
simple binary classification problem with a procedure in 
which a computational model selected training examples for 
the learner. Similar model-based approaches have been 
extended to predict human information needs in tasks as rich 
as a complex video game (e.g., Love, Jones, Tomlinson, & 
Howe, 2008).

In conclusion, although the concept of self-directed learn-
ing has had a widespread influence on education research, this 
idea has received less attention in basic studies of learning and 
memory. As our review highlights, the study of self-directed 
learning opens new, relatively underexplored avenues for psy-
chological research. However, progress on these issues  
will require experimenters to relinquish the control they are 
accustomed to exerting over the learning process and let indi-
viduals freely explore and sample information in their envi-
ronment. In combination with recent advances in machine 
learning, it is increasingly possible to make sense of such 
highly individualized learning sequences. In addition, machine 
learning research provides new quantitative tools for analyz-
ing the effectiveness of self-directed learning and how it might 
vary across learning environments. A more complete under-
standing of the psychological processes underlying self-
directed information sampling behavior may help bridge the 
gap between basic cognitive research and education research.
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Notes
1. The O() is a common notation in computer science that reflects 
how the running time of a program changes as the size of its input 
increases. In this example, with passive learning, the training time of 
the simple threshold estimation algorithm would scale with 1/ε (the 
length of processing would increase for smaller values of ε).
2. A key difference between active learning research and CRL cen-
ters on the nature of what is being optimized. In CRL, the rewards in 
the environment are unknown, and learning is about discovering both 
where the reward is in the environment and a decision policy that can 
optimize that reward. In contrast, active learning involves optimizing 
a known utility function (typically model uncertainty). However, 
both critically involve active information gathering in the pursuit of 
learning.
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