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Abstract

People often make repeated decisions from experience. In such
scenarios, persistent biases of choice can develop, most no-
tably the “hot stove effect” (Denrell & March, 2001) in which
a prospect that is mistakenly believed to be negative is avoided
and thus belief-correcting information is never obtained. In
the existing literature, the hot stove effect is generally thought
of as developing through interaction with a single, stochastic
prospect. Here, we show how a similar bias can develop due to
people’s tendency to selectively attend to a subset of features
during categorization. We first explore the bias through model
simulation, then report on an experiment in which we find evi-
dence of a decisional bias linked to selective attention. Finally,
we use these computational models to design novel interven-
tions to “de-bias” decision-makers, some of which may have
practical application.

Keywords Decision-making, categorization, selective atten-
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People often choose actions based not on full information
about the possible outcomes, but rather on their own past ex-
periences (Hertwig et al., 2004; Hertwig & Erev, 2009). Mak-
ing decisions from experience is necessary in an uncertain
and changing environment, but it can cause persistent biases
because current beliefs and choices can prevent the collec-
tion of information that would improve future choices. One
of the most fundamental biases of experience-based decision-
making is what Denrell & March (2001) called the “hot stove
effect,” in which a negative experience with a prospect causes
an agent to avoid that prospect in the future, preventing fur-
ther belief revision (Denrell & March, 2001; Denrell, 2007).
For example, suppose you attend a weekly lecture series for
the first time and, while the series is usually good, you happen
to attend a boring talk. This negative experience might stop
you from attending the series in the future, and as a result you
might persistently believe the lecture series is boring and not
attend. This type of false belief can’t as easily develop in the
positive domain; if a lecture series is usually boring but you
happen to attend a stand-out talk, you’re likely to keep attend-
ing future talks and will soon learn the truth. This potential
to form false but persistent negative beliefs about stochastic
prospects, and thus avoid them, has been proposed as a possi-
ble explanation of risk- and novelty-aversion by people, ani-
mals, and organizations in a wide variety of contexts (Denrell,
2007, 2005; Niv et al., 2002).

The hot stove effect is a learning trap—a robust sub-
optimality which follows as a consequence of the incremen-
tal nature of belief revision (Erev, 2014). In the current pa-
per, we describe how the process of selective attention during
category learning can exacerbate this learning trap, present
experimental evidence of this bias, and finally propose inter-
ventions that may help decision makers escape it.

Attention and the Hot Stove Effect

Past work has focused on the hot stove effect as a prob-
lem emerging from experience-based decisions about a sin-
gle stochastic prospect which sometimes yields negative out-
comes. But real-world environments are more richly struc-
tured, with a wide variety of prospects related in complex
ways. Rather than mitigate choice biases, such complexity
may make them worse in ways not considered in past work.
We theorize that in a complex environment, a pronounced “at-
tentional” hot stove effect can emerge, even if outcomes are
completely deterministic, due to people’s tendency to catego-
rize the environment based on a low number of dimensions or
features.

Most major theories of categorization (e.g., Nosofsky,
1986; Love et al., 2004) posit that people learn to selectively
allocate their attention to features that best discriminate cate-
gory members. This conjecture is supported by findings that
category structures with fewer relevant features are easier to
learn (Shepard et al., 1961; Nosofsky et al., 1994) and that
people tend to make eye movements only to relevant features
(Rehder & Hoffman, 2005). In most cases, selective attention
supports optimal performance by magnifying differences be-
tween categories. But interestingly, it can also slow learning
in some cases, particularly when a person learns to not at-
tend to a certain dimension that may be useful later. This has
been observed in studies of blocking and backwards block-
ing (Mackintosh, 1975; Kruschke & Blair, 2000), as well as
experiments in which subjects were first trained on one cate-
gory structure and then tasked with learning a second which
involved previously-irrelevant dimensions (Kruschke, 1996).

To see how selective attention can “trap” learners into a
persistent false belief, consider an environment where an
agent encounters different prospects that possess or lack each
of several features. Prospects that are approached yield a de-
terministic positive or negative reward but no outcome is ex-
perienced when a prospect is avoided. The agent’s problem
now is not just of estimating whether a single prospect’s value
is positive but also of categorization—that is, of determining
which combinations of features signify that a prospect should
be approached, and which signify it should be avoided.

Suppose that two features, Feature 1 and Feature 2, are
relevant to a prospect’s value, and only prospects with both
features are negative, as shown schematically in Figure la.
As the agent begins to gain experience approaching negative
prospects (Figure 1b), it will likely learn that prospects with
certain exact combinations of features are negative and should
be avoided. But interestingly, it might also try to learn which
of the features was relevant to it being negative. If experience
suggests Feature 1 is relevant, for example, it may hypothe-
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Figure 1: a: An deterministic environment containing prospects
with two binary features, where only prospects possessing both
features are negative. By attending to both features, a decision-
maker can avoid all negative prospects while exploiting all positive
prospects. b: Early experience happens to highlight the relevance of
Feature 1. ¢: The agent begins to attend only Feature 1, and ignore
Feature 2, making items with and without Feature 2 appear equiva-
lent. Items without Feature 1 are positive, while the value of items
with Feature 1 appear stochastic. d: The agent now avoids items
with Feature 1, since some are negative. This prevents the agent
from gaining feedback which would cause it to change its behavior.

size that Feature 1 is the sole relevant feature and attend more
strongly to whether a prospect has Feature 1 in the future.
If this tendency is extreme, the agent may ignore Feature 2
almost completely (Figure 1c).

If only one dimension is attended, a situation quite like
the traditional hot stove effect develops. All prospects with
Feature 1 are avoided, including those that lack Feature 2,
even though the agent had no negative experience with such
prospects. What’s more, the bias away from these prospects
is persistent, since avoidance of prospects with Feature 1 pre-
vents the agent from collecting the information which would
cause it to modify its current hypothesis, as shown in Fig-
ure 1d. The agent may indefinitely avoid positive regions of
the environment, as well as hold false beliefs about how the
environment may be divided into meaningful categories.

Model simulation

To quantitatively verify that biases of the kind described
above could develop, and their connection to selective atten-
tion, we conducted several simulations using a version of the
ALCOVE model of categorization (Kruschke, 1992), modi-
fied for a reinforcement learning setting in which feedback is
action-dependent (see Jones & Caiias, 2010). We tested the
model on a four-feature category structure, where approach-
ing prospects with both Features 1 and 2 yielded a payoff of
—5 and approaching any other prospect yielded a payoff of
1. This environment matches the structure depicted in Fig-
ure 1, but with two added irrelevant features. Simulations

were run with a specificity constant ¢ = 6, a temperature pa-
rameter ¢ = 15, an output-weight learning rate A,, = 0.1, and
an attention learning rate A = 0.1.

We ran the model for 15 blocks of 16 trials each, across
five simulation conditions. In the contingent, att condition,
the model only received feedback on the value of a prospect
when it approached. In the full-info, att condition, the model
received feedback on the value of all prospects irrespective of
approach decisions. The contingent, no-att and full-info, no-
att conditions mirrored the first two conditions but with the
attention-learning parameter was set to zero. Finally, in the
random-info, att condition the model was yoked to receive
feedback on the same proportion of trials as the contingent
model, but the feedback trials were randomly selected and
independent of the model’s choices. The results of these sim-
ulations are plotted in Figure 2.

As depicted in the left-most panel, agents in the contingent
condition fell into the learning trap and developed a persis-
tent bias, failing to reach perfect performance. In contrast,
agents in the full-info condition quickly reached peak perfor-
mance of 12 points per block. The p(approach|good) and
p(approach|bad) plots (middle and right panel, respectively)
show that the lower performance of the contingent condi-
tion was not due to continued approach of negative, costly
prospects, but rather due to the persistent avoidance of some
positive prospects.

When attention learning is removed, the persistent bias
disappears and the model reaches near-peak performance by
the last block, though it is slower to learn to avoid negative
prospects. This should not be interpreted simply as evidence
that selective attention is generally harmful in this environ-
ment. On the contrary, with full information, selective at-
tention leads to better performance; the full-info, no-att con-
dition performs poorly, overgeneralizing from the negative
prospects. It is only when feedback is dependent on current
belief and action that selective attention becomes a disadvan-
tage.

It is also not the case that the contingent condition is biased
due to a general lack of information. In the random-info con-
dition, where the model is given the same number of feedback
experiences as the contingent condition but distributed evenly
over the space of prospects, no bias develops. Thus, the atten-
tional hot stove effect occurs due not to an overall poverty of
information but to a specific pattern of behavior which pre-
vents information from being gained about prospects which
could correct the model’s misallocated attention.

Finally, it is worth noting that in our simulations we assume
that nothing is encoded in the absence of feedback. However,
recent experiments have suggested that people might employ
constructivist coding in the absence of feedback, essentially
storing the exemplar as though the expected outcome had
occurred and reinforcing existing beliefs (Henriksson et al.,
2010). With this coding scheme, we would expect the atten-
tional hot stove effect exhibited by ALCOVE to be even more
pronounced.
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Figure 2: ALCOVE model simulations of approach-avoid decision-making in five attentional/informational conditions. Left: average score
per block of 16 trials; Center: proportion of positive prospects approached; Right: proportion of negative prospects approached. A persistent
learning bias develops only when the model received action-dependent feedback and is endowed with selective attention. All conditions were

simulated for 1000 model runs.

Experiment

To test the degree to which people are susceptible to the at-
tentional hot stove effect, we performed a simple experiment
similar to the category-learning task described above.

Method

Participants. One hundred one participants were recruited
via Amazon Mechanical Turk. Participants received $1.25
for participation and received a performance-based bonus that
ranged up to $1.80.

Stimuli. Stimuli were computer-generated cartoon bees
that varied on four binary dimensions; they had two or six
legs, a striped or spotted body, single or double wings, and
antennae or no antennae, for a total of 16 unique stimuli (Fig-
ure 3). Two of the four dimensions were chosen as rele-
vant, counterbalanced across participants. Of the four possi-
ble combinations of values on these two dimensions, one was
chosen at random; stimuli with this combination of values
were “dangerous,” and the remaining stimuli were “friendly.”

Procedure. Participants played the role of a beekeeper col-
lecting honey from several beehives. They were told that each
hive contained a single variety of bees, and that while most
hives contained friendly bees that would give them honey,
some hives had been invaded by dangerous bees, which
would sting them if they tried to harvest.

In the learning phase, participants encountered each of the
16 bee varieties 4 times, for a total of 64 trials. They were in-
formed of the number of trials, and a the number of remaining
trails was displayed throughout learning. Stimuli were or-
dered such that every eight stimuli contained two dangerous
and six friendly bee varieties, and were otherwise random.
On each trial, participants visited a new beehive, and were
shown one of the bees in the hive. Based on the bee’s ap-
pearance, they then had to choose either to attempt to harvest
honey from the bee variety in that hive or to avoid the hive.
When participants chose to harvest, they received honey and
added $0.02 to their bonus if the bee variety was friendly, but
were stung and lost $0.10 from their bonus if it was danger-

ous. When participants chose to avoid a hive, they gained
$0.00. Participants started the game with a bonus of $0.40.

Participants were split into two conditions, which differed
in the feedback received upon avoiding a beehive. In the con-
tingent condition, no feedback was provided when a partici-
pant avoided a hive. In the full-info condition, participants
still gained $0.00 when they avoided a hive, but were in-
formed of whether the bee variety was friendly or dangerous
and of what their payoff would have been had they harvested.

The learning phase was followed by a surprise test phase.
During the test phase, participants encountered each variety
twice and chose to harvest or avoid hives as before, but re-
ceived no feedback about the outcomes of their actions and
were not able to see changes to their bonus. This phase pro-
vided a comparison of learning under equivalent conditions.

After the test phase, participants were informed of their to-
tal bonus, and were asked two final questions: “About what
percentage of beehives do you think contained dangerous
bees?” and “Which features do you think were useful in de-
ciding whether a bee variety was friendly or dangerous?”. For
the first question, participants entered a percentage between
0 and 100, and for the second question participants could
choose any combination of the four features using check-
boxes.
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Figure 3: Example stimuli with opposite values on all four binary
dimensions.



Results and Discussion
Learning

Learning performance averaged in 16-trial blocks is shown in
Figure 4, left, separated by positive and negative prospects. In
the first block of learning, participants in the contingent con-
dition approached all prospects more than those in the full-
info condition, p < .001." This suggests participants valued
the information which was gained by approaching in this con-
dition, in line with the results of other recent studies which
find that people are information-seeking in simple decision-
making tasks (Speekenbrink & Konstantinidis, 2014; Rich &
Gureckis, 2014; Wilson et al., 2014).

By the last block of learning participants in both conditions
rarely approached bad prospects, with no difference between
the conditions, p > .25. Participants in the full-info condi-
tion learned to approach good prospects at a higher rate by
the end of learning (p < .001), while participants in the con-
tingent condition approached good prospects less frequently
(p = .011), such that by the final block participants in the
full-info condition were significantly more likely to approach
a positive prospect than in the contingent condition, p = .017.

Test performance

Performance in the test phase is plotted in Figure 4, right,
which shows each participant’s proportion of approaching
good and bad prospects. Participants in the full-info condition
were significantly more accurate at the test phase, p = .017,
choosing the correct action on 81.5% of trials versus 71.5%
for the contingent condition. Interestingly, they did not gain
significantly more points on average (p > .250), though the
difference in median number of points scored approached sig-
nificance (p = .106). This lack of difference in score is due
in part to a small subset of participants in the full-info condi-
tion who approached all stimuli at a high rate, thus incurring
a large cost from the bad prospects.

The higher accuracy of participants in the full-info condi-
tion shows that they better followed the true, 2-feature rule.
However, it does not show whether contingent condition par-
ticipants were less accurate because they followed a uni-
dimensional rule, or simply because they were more noisy.
To determine the extent to which participants in each condi-
tion followed a one-feature rule, we calculated a “1-feature
rule score” for each participant. This score was determined
by calculating the proportion of trials on which each partic-
ipant followed each of the two relevant 1-feature rules, and
then taking the maximum over these two proportions. Partic-
ipants in the full-info condition had an average 1-feature rule
score of 0.74, while those in the contingent condition had a
significantly higher score of 0.83, p = .004. Thus, the dif-
ference in accuracy between the full-info and contingent con-
dition participants does not appear to be simply a product of
noise due to the latter group’s restricted information. Rather,

LAll p values are calculated via two-sided permutation test unless
otherwise specified.

it seems that participants in the contingent condition system-
atically attended to only one of the two relevant dimensions,
thus avoiding a consistent subset of rewarding beehives.

Post-test questions

Participants in the contingent condition responded on average
that 35.8% of prospects were bad, while participants in the
full-info condition responded that only 28.2%, a marginally
significant difference (p = .055). The true proportion was
25%. This supports the conjecture that action-dependent
feedback can affect a person’s beliefs about the environment,
and is consistent with the findings of Fazio et al. (2004) that
approach-avoid learning lead to belief that the environment
was more negative than reality. In addition, while only 22.9%
of participants in the contingent condition identified the right
combination of relevant features, 40.4% of participants in the
full-info condition did, a marginally significant difference by
Fisher’s exact test (p = .054).

In summary, we have provided empirical and computa-
tional evidence of an attentional learning trap wherein avoid-
ance behavior promotes the persistence of false negative be-
liefs via attentional learning. While the overall effect we re-
port is rather intuitive, it is important to point out that the
vast majority of categorization studies have ignored the im-
pact of choice-contingency on learning (essentially focusing
exclusive on the “full info” conditions in our experiment). In
addition, even the traditional, single prospect version of the
hot stove effect has proven surprisingly difficult to produce in
laboratory settings (e.g., Biele et al., 2009; Rich & Gureckis,
2014).

Using cognitive models to meliorate the hot
stove effect

Thinking about choice-contingent learning traps in the con-
text of category learning carries several real-world implica-
tions. For instance, screening job applicants usually involves
a stream of encounters with many different prospects that
possess a variety of attributes. The challenge for a firm is
to determine which combinations of attributes tend to signal
a good worker. As in our experiment, it is clear there is a
strong potential for biased hiring rules that screen out many
good candidates due to the selective utilization of certain ap-
plication features.

Given these societal concerns, it is interesting to consider
if insight from computational models of learning can provide
guidance on how best to limit this bias. When the hot stove
effect is caused by true stochasticity, it is difficult to prevent
(Denrell, 2007), though considering the future value of infor-
mation can limit its severity (Rich & Gureckis, 2014). But in
cases where the learning trap is primarily attentional, we hy-
pothesize that changes to the environment which disrupt the
narrowing of attention may significantly reduce biases. In the
following section, we explore this issue computationally by
asking which manipulations to the learning environment help
ALCOVE “avoid the trap.”
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Figure 4: Left: Proportion of negative and positive prospects approached by learning block for the full-info and contingent conditions. Error
bars are standard error of the mean. right: Performance in the test phase for participants in each condition, plotted as proportion of positive
prospects approached against proportion of negative prospects approached and jittered slightly to increase visibility of overlapping points.
The point (1,0) represents perfect performance, while the black line denotes chance performance.

Debiasing interventions

In this section, we present two interventions we hypothesized
would mitigate the attentional hot stove effect. We first de-
scribe the intuitions behind the interventions and then provide
a modeling analysis testing the effectiveness of each.

Individuating prospects. One possible way to limit the at-
tentional hot stove effect is to make stimuli increasingly dis-
tinct and idiosyncratic. When stimuli are more distinctive,
people tend to treat them more as individuals and show in-
creased ability to learn identification compared to categoriza-
tion. While identification learning is more difficult than cate-
gorization with generic artificial stimuli (Shepard et al., 1961;
Love et al., 2004), Medin et al. (1983) found that people were
more easily able to pair unique first names than categorical
last names with photographs of women’s faces. Love et al.
(2004) found that this phenomenon could be accounted for
with the SUSTAIN model of categorization by assuming that
the women'’s faces had many distinctive features beyond those
manipulated by the experimenters, which decreased the sim-
ilarity among stimuli and thus increasing the odds of repre-
senting each stimulus individually.

In an approach-avoid decision-making task, increased indi-
viduation of stimuli should make a person less likely to gener-
alize information gained from experience with one prospect
to decisions about another. Attention paid to idiosyncratic
features will slow the biasing of attention towards a single
dimension, giving the person more opportunity to explore a
variety of stimuli and learn the true structure of the environ-
ment. Essentially, increased individuation of prospects shifts
the task away from category-learning, and towards learning
about whether to approach individual prospects. In addition,
it may be easier for people to track the history of past rewards
with more individually memorable stimuli.

Occluding feature information. A second approach to de-
creasing the attentional hot stove effect may be, paradox-

ically, to restrict information by randomly occluding some
features of a prospect such that the decision-maker can’t ob-
serve their values. While this intervention could of course im-
pair a person’s decision-making ability, it could actually im-
prove performance in the long run by causing a greater spread
of attention. Taylor & Ross (2009) found that participants
learned more about non-diagnostic features in a category-
learning task when features were randomly occluded, and
hypothesized that feature-occlusion discourages narrowly se-
lective attention and promotes a broader attentional strategy.
In the context of approach decisions, if a person is attend-
ing strongly to a dimension which is obscured, he or she may
try using other features, which may lead to the discovery that
they are relevant. Even when the favored features is not oc-
cluded, the possibility of their future absence may cause peo-
ple to be less quick to look solely at those features (Rehder &
Hoffman, 2005).

4 learning blocks 20 learning blocks
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Figure 5: Average performance of ALCOVE model in a test block
after four or twenty learning blocks, in the contingent and full-info
condition and after two attentional interventions. All conditions sim-
ulated for 1000 runs of the model.



Modeling debiasing interventions

To test the possible efficacy of these interventions, we per-
formed model simulations comparing them to the contingent
and full-info conditions. To modify the model for the individ-
uation condition, we added an extra dimension with 16 nom-
inal values representing idiosyncratic features of each stimu-
lus (following Love et al., 2004). For the occluded-dimension
condition, on % of trials a randomly chosen dimension was
masked such that it did not contribute to the model’s network
activation and its attention weight was not updated.

The models were simulated for learning phases of two dif-
ferent lengths, 4 blocks and 20 blocks, followed by a one
block test phase with no feedback, where no dimensions were
masked in the occluded-dimension condition and the individ-
uating dimension was masked in the individuation condition.
Performance of the models at test is reported in Figure 5.

With only 4 blocks of learning, as in our experiment, the
efficacy of the interventions is low. The addition of idiosyn-
cratic features aids learning only slightly, and occluding di-
mensions actually hurts performance, as the decrease in in-
formation from missing dimensions hurts learning more than
increasing the spread of attention improves it.

After a more substantial 20 blocks of learning, the inter-
ventions are more effective. Performance in the individuation
condition approached that of the full information condition,
and performance in the occluded-dimension condition sur-
passes that of the contingent condition. Future work will aim
to evaluate these interventions with human participants, and
to develop methods that might speed up their effectiveness
such as maximizing the salience of individuating features.

Conclusion

Making decisions from experience is an essential part of
adaptive cognition, yet such decisions can produce biases
in action and belief. Here, we considered one mechanism
through which such biases might develop, which we term the
attentional hot stove effect. This effect is a natural conse-
quence of popular category learning models but has so far
been largely ignored. To the extent that such biases are caused
by misallocation of attention, rather than irreducible stochas-
ticity in the environment, it may be possible to alter decision-
making patterns or the environment itself to facilitate better
learning and choice.
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