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Learning usually improves the accuracy of beliefs through the accumulation of experience. But are there
limits to learning that prevent us from accurately understanding our world? In this article we investigate
the concept of a “learning trap”—the formation of a stable false belief even with extensive experience.
Our review highlights how these traps develop through the interaction of learning and decision making
in unknown environments. We further document a particularly pernicious learning trap driven by
selective attention, a mechanism often assumed to facilitate learning in complex environments. Using
computer simulation, we demonstrate the key attributes of the agent and environment that lead to this new
type of learning trap. Then, in a series of experiments we present evidence that people robustly fall into
this trap, even in the presence of various interventions predicted to meliorate it. These results highlight
a fundamental limit to learning and adaptive behavior that impacts individuals, organizations, animals,
and machines.
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Conventional wisdom holds that learning from experience
brings us closer to understanding the world around us. For in-
stance, with enough practice we can learn even complex skills like
playing an instrument or speaking a new language. However, in
many situations learning new things trades off against the goal of
maximizing reward. Our desire to try every restaurant in a city has
to be balanced against our desire to have a good meal tonight. This
trade-off, known as the exploration–exploitation dilemma, has
been extensively studied in computer science (Sutton & Barto,
1998), organizational behavior (March, 1991), and psychology
(Mehlhorn et al., 2015). The central premise of this article is that
in these situations even adaptive learning can lead people (as well
as other agents such as organizations, animals, and machines) to
form robust false beliefs about the world. For instance, consider a
child who is exploring different foods, and finds that she dislikes
spinach and cucumbers. As a result of this experience, she may
falsely believe she dislikes all vegetables and avoid vegetables in
the future, never learning that she really likes broccoli even as she
continues to explore other foods.

Inspired by the organizational-learning theorists Levinthal and
March (1993), we call the development of these types of false or
incomplete beliefs “learning traps” (see also, Erev, 2014; Teodo-
rescu & Erev, 2014). We use this term because the failure of
beliefs to move toward truth in these situations is caused not by
ignorance, but instead by the interaction of exploratory choice with
what is already believed. Learning traps represent a very general
class of phenomena that reoccur in many situations for many types
of learners.

In this article, we aim to provide a comprehensive summary of
known learning traps and the factors that generate them. We begin
by describing a variety of disparate findings that can be interpreted
as reflecting learning traps, in fields from organizational theory
(Denrell, 2007) to social psychology (Fazio, Eiser, & Shook, 2004)
and domains from foraging behavior (Niv, Joel, Meilijson, &
Ruppin, 2002) to stereotype formation (Denrell, 2005) and nepo-
tism (Liu, Eubanks, & Chater, 2015). Our synthesis shows that a
crucial ingredient for the formation of learning traps is general-
ization from past experience that “traps” people into premature
exploitative behaviors and limits further learning and belief revi-
sion. Within this review, we progress from traps caused by simple
forms of generalization to traps caused by more complex forms of
generalization, and provide a unifying framing in which learning
traps represent intrinsic limits of learning and adaptation.

In the empirical portion of the article we present a computa-
tional model and a series of simulations and studies with which we
explored one particular learning trap. This learning trap can form
when people selectively attend to a subset of relevant stimulus
attributes while learning, which is interesting because selective
attention is most often considered a facilitative mechanism for
learning (e.g., improving speed of acquisition and performance by
filtering out irrelevant information). As a test of the robustness of
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this attentional learning trap, we explored a variety of manipula-
tions aimed at reducing the prevalence of this trap for both simu-
lated and human learners. To foreshadow, our results confirm the
robustness and prevalence of learning traps. We conclude by
discussing additional routes to the prevention of learning traps and
highlighting other unstudied settings in which they are likely to
emerge.

Trapped by Stochasticity (i.e., Noise)

The simplest learning traps arise in situations where a person (or
other agent) repeatedly encounters a prospect and must decide
whether or not to interact with it and experience a consequential
outcome (e.g., approach–avoidance). A prospect might, for exam-
ple, be another person, with the outcome of interaction being a
pleasant or unpleasant conversation. A reasonable assumption in
these cases is that the prospect will be stable over time, and that
past experiences with the prospect will generalize well to future
experiences. When this assumption holds, then correct knowledge
about the whether the prospect is good or bad can be gained from
the first encounter. If instead there is stochasticity in the outcomes,
then there are times when generalization from early encounters
will be misleading, and learning traps can develop. Note that for
the purposes of this article stochasticity means random, unsystem-
atic noise over time or across instances. Stochasticity that causes
systematic changes over time, as described, for example, by Beh-
rens, Woolrich, Walton, and Rushworth (2007), could be the
source of additional learning traps but will not be directly ad-
dressed.

Perhaps the paradigmatic example of this type of learning trap is
the “hot stove effect,” introduced by Denrell and March (2001). If
a prospect is positive on average, but stochastic, early experiences
may make the prospect appear negative. If a person learns from
and generalizes from these early experiences, they will begin to
avoid the prospect. Once this has occurred, learning halts because
no more information is gained about the prospect, and the person
is left with a false negative belief that is difficult to overcome.
Avoiding the option appears to be the safest strategy, but it is
exactly the strategy that prevents learning the true structure of the
environment. Notably, this trap does not occur when a prospect is
usually negative but mistakenly believed to be positive. In this
case, the false belief causes continued interaction, which eventu-
ally allows the belief to be corrected.

The hot stove effect is intrinsic to experiential, reward-driven
learning in a variable environment, and is exhibited even by an
optimal agent (Le Mens & Denrell, 2011), though it can be
mitigated through a variety of factors including more persistent
exploration (Rich & Gureckis, 2017). In addition, the effect can
explain underexploration and apparent risk aversion across a broad
range of experience-based decision-making domains, ranging from
the decisions of firms to the foraging behavior of bees (Denrell &
March, 2001; Niv et al., 2002). It also provides one explanation for
why people tend to prefer novel prospects over previously expe-
rienced ones (Le Mens, Kareev, & Avrahami, 2016), as well as for
why people prefer ingroup-members (with whom they must inter-
act) over outgroup-members (with whom they repeatedly choose
whether or not to interact; Denrell, 2005; Liu et al., 2015).

A second learning trap that develops from the expectation of
stable outcomes is the underweighting of rare events. This learning

trap was identified by researchers in the decisions from experience
literature (Hertwig, Barron, Weber, & Erev, 2004), using a sam-
pling paradigm in which participants repeatedly tested several
prospects, paying a cost of time and sometimes money for each
sample (Juni, Gureckis, & Maloney, 2016), before selecting one
for a consequential choice. As participants explore each alternative
they learn the common outcomes well and become confident
enough to make a final, exploitative choice, but their samples often
fail to include rare outcomes. Thus, people’s beliefs about prospect
values when making their final decisions systematically under-
weight these rare outcomes. This underweighting of rare events
may also occur in settings where all choices are consequential,
both in the lab (Teodorescu & Erev, 2014) and for real-world rare
events ranging from driving accidents (Fuller, 1991) to nuclear
disasters and scientific discoveries (Levinthal & March, 1993).
Due to its interaction with the hot stove effect, the underweighing
of rare events is likely more persistent when the rare event is
positive, and the prospect may thus be mistakenly avoided. When
the rare event is negative, the decision maker is likely to continue
sampling the prospect and discover it in the long run, though the
result of this may be disastrous. For example, failure to experience
the rare event of discovery may drive someone out of science
permanently, while failure to experience the rare event of a car
accident may lead someone to continue driving without a seat belt
until the event is experienced.

Trapped by Similarity

In environments with not just one prospect but several, new
learning traps become possible as patterns of generalization be-
come more complex. Rather than just determining how much to
generalize from the past to the future, an agent must determine
how much to generalize from experience with one prospect to
experience with another.

One answer for how to generalize across prospects is based on
their similarity. If two prospects are highly similar, for example
sharing many perceptual features, then it may be safe to assume
that the outcomes of interacting with them are similar as well
(Shepard, 1987; Tenenbaum & Griffiths, 2001; Tversky, 1977).
This notion of similarity is a core aspect of many theories of
human category learning and categorization. Studies of natural and
artificial categories show that a novel item is judged to be a typical
category member to the extent that it is similar to other members
of the category and dissimilar to members of different categories
(Rosch & Mervis, 1975). In addition, many formal models of
categorization determine the membership of an item through
similarity-based comparison to past category members or to a
more abstract category representations (Love, Medin, & Gureckis,
2004; Nosofsky, 1986).

The expectation that similar prospects will yield similar out-
comes, like the expectation that prospects are stable over time, is
a reasonable one. However, in value-based decision making with
choice-contingent feedback, similarity-based generalization may
cause the value of prospects near the boundary between good and
bad outcomes to be permanently misestimated. This is particularly
likely to be the case for positive prospects that are similar to
negative ones. When a novel prospect is similar to other prospects
with which an agent has had negative experiences, the decision
maker must choose to either approach it to learn about its value, or
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to avoid it, exploiting what it has learned from past experience. If
the prospect is avoided, this creates a learning trap in which the
decision maker never learns the true value of positive prospects
that fall “in the shadow” of similar negative prospects that were
experienced earlier.

Fazio, Eiser, and Shook (2004) confirmed the existence of this
trap in a series of experiments investigating how people learn to
approach or avoid in an environment where multiple distinct
prospects varied along two continuous dimensions. (Prospects
were “beans” that varied in shape and number of speckles.) They
found a pronounced learning asymmetry, with participants cor-
rectly avoiding negative prospects, but often incorrectly avoiding
positive prospects as well. When participants were given full
(foregone) information, and told the value of prospects they
avoided, the asymmetry disappeared, supporting the idea that they
had entered a learning trap in which their behavior prevented
further experience and learning. A related simulation study found
that the same effect emerged in a connectionist network that
generalized prospect values based on similarity (Eiser, Fazio,
Stafford, & Prescott, 2003).

While this learning trap was first analyzed as a way of under-
standing the development of social attitudes, it is likely to emerge
in many of the situations in which the hot stove effect has been
observed. To take one example, Niv, Joel, Meilijson, and Ruppin
(2002) found that simulated bees came to avoid flowers that
produced a variable amount of nectar, even if they produced more
nectar on average than stable flowers. One would predict that bees
would also avoid flowers of a species that looks similar to a
low-nectar species, even if the species itself produces a large,
stable amount of nectar.

Trapped by Selective Attention

For the bulk of this article we will focus on a relatively unex-
plored learning trap that develops due to selective attention, one of
the most basic forms of rapid generalization that extend beyond
similarity. A classic finding in category learning is that the ease of
learning a category structure depends not only on the similarity
of the exemplars within and between categories, but on the number
of dimensions required to distinguish categories (Nosofsky, Gluck,
Palmeri, McKinley, & Glauthier, 1994; Shepard, Hovland, &
Jenkins, 1961). Subsequent theories of categorization have posited
that people adapt their allocation of attention to optimize perfor-
mance, selectively attending those dimensions that discriminate
categories while ignoring those that are irrelevant (Kruschke,
1992; Nosofsky, 1986). Thus, upon encountering an item, an agent
with selective attention will weigh past experiences with items that
are similar on attended dimensions strongly, while weighing ex-
periences with items that are similar on nonattended dimensions
weakly or not at all. Recent work in reinforcement learning has
shown that selective attention plays a role in value based decision
making as well (Niv et al., 2015).

While selective attention often aids learning, it creates a bias
toward attention to fewer dimensions. That is, a learner with
selective attention will initially expect there to be few dimensions
of a prospect relevant to its outcome, and will only be induced to
believe there are additional relevant dimension with more data.
This bias means there are cases where selective attention can
inhibit later learning, particularly when a person comes to ignore

a dimension that is later useful. This can occur in blocking and
backward blocking, phenomena in which associating a single cue
with an outcome prevents learning about other, concurrently pre-
sented cues (Kruschke & Blair, 2000; Mackintosh, 1975). It also
happens in cases where a person learns first one category structure
and then a second in which a previously irrelevant dimension must
be attended (Hoffman & Rehder, 2010; Kruschke, 1996).

The bias toward categories with few relevant dimensions can
also lead to a distinct learning trap. For example, consider the
schematic diagram in Figure 1. Here, a hypothetical agent repeat-
edly encounters prospects that vary on two binary dimensions.
These dimensions jointly determine the prospect quality in a
somewhat complex manner, with prospects that have a value of 1
on both dimensions yielding negative outcomes and all other
prospects yielding positive outcomes.1 Prospects that are ap-
proached yield a deterministic positive or negative outcome, while
those that are avoided provide no information. The agent must
explore the environment by approaching uncertain prospects to
learn about them, but also must eventually exploit what it has
learned and avoid prospects it expects to be negative if it wishes to
maximize positive outcomes.

In this setting, an agent with selective attention will attempt to
learn not just which encountered prospects are positive and neg-
ative, but also which dimensions are useful and worth attending
when deciding what to approach and what to avoid. As the agent
gains experience, it will adjust its allocation of attention to opti-
mize its performance based on its observations.

The true structure of the environment incentivizes attention to
both dimensions. Despite this, variation in the prospects the agent
happens to explore early on may cause one dimension to be
attended more than the other and believed to have a stronger effect
on prospect outcome. If this tendency is strong enough, the agent
may begin to exploit its perceived knowledge and act based on that
dimension alone, approaching prospects that have a value of 0 on
that dimension, and avoiding those with a value of 1.

Once learned attention influences behavior in this way, the agent
has entered a learning trap. All prospects with a value of 1 on the
attended dimension are avoided, including those that have a value
of 0 on the unattended dimension, with which the agent has had no
negative experiences. The bias away from these prospects is per-
sistent, since the agent avoids all prospects that would provide
evidence of the importance of the second dimension. The agent
may avoid a positive region of the environment indefinitely, and
may also consequently hold false beliefs about how the environ-
ment is divided into meaningful categories.

Trapped by Simplicity: A Unifying View

In the following section, we will use a version of ALCOVE
(Kruschke, 1992), a well-known model of human category learn-
ing with a selective attention mechanism, to explore the conditions
under which an attentional learning trap can develop. However, we
hypothesize that other models of categorization, including models
based on very different principles than ALCOVE and lacking

1 While we assume an interactive, deterministic relationship between the
dimensions and the binary outcome, a similar structure can occur if two
dimensions have independent, logistic relationships to the outcome (e.g.,
p�negative� � 1 ⁄ �1 � exp��3�2d1 � 2d2 � 3���).
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explicit selective attention mechanisms, would likely fall into a
similar trap for slightly different computational reasons.

For example, we expect that rule-based models of categoriza-
tion, such as the rule-plus-exception model (Nosofsky, Palmeri, &
McKinley, 1994) and the rational rules model (Goodman, Tenen-
baum, Feldman, & Griffiths, 2008), would fall into the “atten-
tional” learning trap quickly and easily, because they prefer sim-
ple, one-dimensional rules. In the category structure described in
Figure 1, either model would be likely to form a rule to respond
based on Dimension 1 or Dimension 2 exclusively. While both
models will adopt more complex rules if experience warrants, the
use of a unidimensional rule would prevent the proper feedback
from being obtained if feedback is choice-dependent. It has long
been appreciated that selective attention and rule-based categori-
zation are related phenomena (Kruschke, 1992).

Clustering models such as SUSTAIN (Love et al., 2004) and the
rational model (Anderson, 1991) could also fall into the trap. Both
models tend toward simple category representations with few
clusters, and could become trapped if they attempted to form a
two-cluster representation of the environment in Figure 1 and
assigned a region of positive items to the negative cluster. Again,
this mistake would not be corrected because prospects in the
negative cluster would be avoided, preventing the model from
learning that its representation was incorrect and that another
cluster should be recruited. (In the case of SUSTAIN, the trap
would be exacerbated by an attentional tuning mechanism similar
to ALCOVE’s).

The common thread joining these disparate models and making
them susceptible to learning traps is their preference for simplicity.
Thus, what we call an “attentional” learning trap could also be
considered more generally as a “simplicity” learning trap; an agent
comes to believe the environment has a simpler structure than it
truly does, which prevents it from exploring further to come to a
more complex, more correct belief. Other learning traps, including
those based on stochasticity and similarity, could be derived from
a simplicity-based bias as well. An environment that is stable is
simpler than one that changes, and an environment where similar
prospects produce similar outcomes is simpler than one where they
do not. Indeed, many aspects of cognition seem to have an induc-
tive bias toward simple inferences and generalizations (Chater &
Vitányi, 2003; Feldman, 2003).

As researchers in machine learning have shown, some degree of
inductive bias is necessary for learning to proceed—without it, a
huge number of generalizations will be equally plausible from any
finite set of experiences (Geman, Bienenstock, & Doursat, 1992;
Mitchell, 1980). Thus, the tendency to believe the world is simple
may be a necessary component for effective learning, and one that
leads to better performance in many environments even as it
inevitably leads to worse performance in others (Wolpert, 1996).
This differentiates learning traps from other phenomena such as
confirmation bias that prevent belief revision (Nickerson, 1998).
Confirmation bias is generally (though not always, see Navarro
and Perfors (2011)) thought of as reflecting a flaw in inference and
reasoning, but learning traps, in their most basic form, are not a
true suboptimality. Rather, they are an unavoidable byproduct of
learning—whether by people, machines, animals, or organiza-
tions—in situations where the need for additional information
must be traded off with the need for reward maximization.

Computational Explorations of the Attentional
Learning Trap

Our discussion so far has highlighted intuitive reasons why
learning traps form as well as cited empirical evidence that humans
are susceptible to some these traps (e.g., the hot stove effect).
However, it is helpful to explore this issue in slightly more detail
through computer simulation. Computer simulations allow us to
conduct counterfactual analyses that help isolate necessary and
sufficient aspects of the learner–environment interaction that pro-
voke learning traps. They also help us to set the stage for our later
empirical studies. We particularly focus our work on the novel
attentional learning trap introduced above.

ALCOVE-RL: A Computational Model of Learning
and Generalization From Experience

While the attentional learning trap could be fruitfully analyzed
from multiple perspectives, we approach it from the angle of
selective attention, using a modified version of the ALCOVE
(Kruschke, 1992) model of categorization, for several reasons.
ALCOVE is a successful and widely used model of human cate-
gory learning (see, e.g., Nosofsky et al., 1994), and can be con-
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veniently modified for use in a reinforcement-learning context (see
Jones & Cañas, 2010). Additionally, ALCOVE shares deep formal
structure with the simple adaptive learning models used to study
stochasticity-based learning traps (Denrell & March, 2001) and the
connectionist models used to study similarity-based learning traps
(Eiser et al., 2003). Like these models, ALCOVE learns in an
incremental, mechanistic manner to reduce error (or increase re-
ward). This makes ALCOVE an interesting model in which to
demonstrate a learning trap, because unlike models that directly
aim for simple representations, its biases are implicit. Just as the
update rules of adaptive learning models imply a “built in” as-
sumption that the environment is fairly stable, the attentional
learning rules of ALCOVE may imply a built-in assumption that
there are few relevant dimensions, which will cause a learning trap
when this assumption is incorrect and feedback is choice-
dependent.

ALCOVE was originally designed for learning in supervised
category-learning tasks with corrective feedback. To use it to study
learning traps, we created a modified model, ALCOVE-RL, for
use in a reinforcement-learning task where feedback is continuous
and action-dependent, following the work of Jones & Cañas
(2010).

As in the original ALCOVE model, when a new prospect is
presented to our model it first activates the set of input nodes ain

based on its value on each dimension. This activation then spreads
to a set of hidden nodes ahid representing the space of exemplars
(i.e., possible prospects). Each hidden node aj

hid has a position hj in
the psychological space defined by the input dimensions, and is
activated based on its similarity to the input node values.

aj
hid � exp��c��i

�i |hji � ai
in |��

The similarity function is parameterized by a specificity con-
stant c, as well as learnable attention parameters a determining the
breadth of generalization along each dimension. Essentially, inter-
nal representations of past prospects are activated based on their
similarity to the current input, with similarity counting more on
dimensions with high attention settings than on those with low
ones.

The activation of the hidden nodes then spreads to output nodes
aout, which are each associated with an action. As in ALCOVE the
output activation of ak

out is determined by first taking the sum of the
ahid activations, weighted by the learnable parameters wk. The wk

parameters represent the model’s association of each hidden node
with a reward value. The summed outputs are then divided by the
sum of ahid activations to produce a weighted average. This nor-
malization is not necessary in ALCOVE for category learning,
where the only goal is for the correct output node to have the
highest activation. But in reinforcement learning, normalization
ensures that output activation reflects predicted reward and does
not overshoot or undershoot this value due to overall activation
strength.

ak
out � �

j
wkjaj

hid ⁄ �
j

aj
hid

Following ALCOVE and classic models of decision making
(Luce, 1959), the model’s choice of action then follows a proba-
bilistic choice rule, with its degree of determinism controlled by
the parameter �.

Pr(K) � exp(�aK
out) ⁄ �

k
exp(�ak

out)

The feedback mechanism in ALCOVE-RL again diverges from
the original ALCOVE implementation. In ALCOVE, feedback is
received for all outputs, and there is no penalty for outputs with
greater magnitude than the correct values. In our model, upon
receiving a reward r, the feedback tk to the model is

tk � �r if k is the chosen action
ak

out otherwise

In other words the model is told that the predicted reward for the
chosen action should move toward r, and that no change is needed
for the predictions on other actions since no information about
their outcomes was gained.

Given this action-dependent feedback, the model then updates
its exemplar-action weights and attention weights through the
same mechanisms at ALCOVE in order to decrease future error.

�wkj
out � �w�tk � ak

out�aj
hid

��i � ��á�
j ��k

�tk � ak
out�wkj�aj

hidc |hji � ai
in |

Exploring the Determinants of the Attentional
Learning Trap Through Simulation

The computational ALCOVE-RL model makes it possible to
test through simulation whether the attentional learning trap de-
scribed above can emerge through learning with choice-contingent
feedback, and whether ALCOVE’s selective attention mechanism
is in fact crucial for the trap to develop. Successful production of
a learning trap through simulation will set the stage for studies
with human participants.

To explore the behavior of ALCOVE-RL across a range of
conditions, we devised a task similar to Figure 1. In particular, we
presented the model with a four-feature category learning problem,
where approaching prospects (i.e., exemplars) with both Features
1 and 2 yielded a payoff of �4 and approaching any other prospect
yielded a payoff of 1. This environment matches exactly the
structure depicted in Figure 1, but with two added irrelevant
features. Each run of the model lasted for a 20-block learning
phase of 16 trials each. Within each block all prospects were
observed in a pseudorandom order, with the condition that each
subblock of eight trials included two negative prospects and six
positive prospects. The learning phase was followed by a final test
block in which ALCOVE-RL made choices but underwent no
learning updates.

We simulated five distinct conditions in order to understand
what properties of model and of the environment were sufficient to
produce an attentional learning trap. The �contingent, att� con-
dition instantiated the kind of agent and environment described in
our introduction to the learning trap. In this condition, the model’s
attentional learning capability was active, and the model only
received feedback on the value of a prospect when it approached.
In the �full-info, att� condition, we tested whether partial feed-
back was critical to the learning trap by modifying the environ-
ment so that the model received feedback on the value of all
prospects regardless of its choice (i.e., foregone rewards, see Love
& Otto, 2010). The �contingent, no-att� and �full-info, no-att�
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conditions tested the role of selective attention in the learning trap.
These conditions mirrored the first two, but with the attention to all
dimensions yoked to remain equal. Finally, in the �random-info,
att� condition we tested whether a learning trap might be pro-
duced not because an agent receives choice-contingent feedback
but simply because it receives less feedback. In this condition the
model received feedback on 50% of trials, but the feedback trials
were randomly selected and independent of the model’s choices.

Each condition was simulated for 1,000 model runs. All simu-
lations were run with a specificity constant c � 6, a temperature
parameter � � 15, an output-weight learning rate �w � 0.1, and an
attention learning rate �a � 0.1. These parameters were selected to
create an agent with a high propensity to fall into learning traps. In
particular, the high �w and �a cause the agent to form beliefs
quickly, while the high � causes the agent to act fairly determin-
istically based on those beliefs, reducing the amount of corrective
feedback it can receive. Thus, the results of the simulation should
not be interpreted as a claim about the degree to which
ALCOVE-RL will fall into an attentional learning trap under all
possible parameter settings, but rather as an exploration of how
one particular model with one parameter setting behaves as we
alter the feedback from the environment and its ability to deploy
selective attention.

Results

Figure 2 shows a breakdown of ALCOVE-RL’s behavior over
20 blocks of experiential learning and the final test block. Models
in each condition were classified based on whether or not they
perfectly followed the correct two-dimensional rule or one of the
two one-dimensional rules indicative of an attentional learning
trap.

Over a quarter of agents in the �contingent, att� condition fell
into the learning trap, with their behaviors influenced by only one
of the relevant dimensions. In all other conditions, there was little
tendency to learn an incorrect, unidimensional rule, and the correct
rule tended to be learned quickly even in cases where an incorrect
pattern of behavior was temporarily adopted. Providing full feed-

back in the �full-info, att� condition allowed for very swift
learning, while maintaining contingent feedback but removing
selective attention in the �contingent, no-att� condition lead to
accurate learning as well. Interestingly, when given full feedback
the model learned more quickly with selective attention than
without it, showing that selective attention is only detrimental to
learning this category structure when feedback is contingent.

It is also not the case that the bias of the �contingent, att�
condition was caused by a general lack of information. In
the �random-info, att� condition, where the model received
feedback on half of the trials, randomly chosen, learning pro-
ceeded quickly and without bias. Thus, the attentional learning trap
occurred due not to an overall poverty of information but to a
specific pattern of behavior that prevented information from being
gained about prospects that could correct the model’s misallocated
attention.

Finally, it is worth noting that in our simulations thus far we
have assumed that nothing is encoded in the absence of feedback.
As we have shown, learning traps can develop simply through the
interplay of generalization and exploratory choice. However, data
from recent experiments—among the few to study category learn-
ing with choice-contingent feedback—have suggested that when
people do not experience feedback from a prospect they employ
constructivist coding. In constructivist coding, rather than learning
nothing upon avoiding an exemplar, the learning agent updates its
beliefs as though it had approached the prospect and received the
expected or predicted (likely negative) outcome, reinforcing exist-
ing beliefs with additional learning (Elwin, Juslin, Olsson, &
Enkvist, 2007; Henriksson, Elwin, & Juslin, 2010). With this
coding scheme, we would expect learning traps to become more
intense, as the negative belief that lead a prospect to be avoided
would be strengthened with each repeated avoidance. To test this,
we simulated a version of ALCOVE-RL in which upon avoiding a
prospect the model updated its beliefs as though it had approached
and received a small negative outcome of �0.5. The results of
this �constructivist, att� condition, plotted against the �contin-
gent, att� condition in Figure 3, confirm that even a small amount

Contingent, att. Full info, att. Contingent, no att. Full info, no att. Random info, att.
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Figure 2. ALCOVE-RL model simulations of approach–avoid decision making in five attentional/
informational conditions. Panels show the proportion of model runs adopting the correct two-dimensional
strategy or one of the one-dimensional learning traps in each of the 20 learning blocks and the test block. See
the online article for the color version of this figure.
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of constructivist coding leads to a more pronounced learning trap.
(A stronger constructivist coding scheme in which avoided items
are assumed to have produced the full �4 negative outcome causes
the model to avoid all prospects entirely.) To preview our exper-
imental results, the more severe learning trap caused by construc-
tivist coding is in line with the behavior we observed among our
human participants.

Experiment 1

Our simulations verify the pernicious nature of learning traps
and the necessary aspects of the learner–environment interaction
that encourage their development. To test the degree to which
people are susceptible to the attentional learning trap, we per-
formed a simple experiment similar to the category-learning task
described above.2 Given the broad support for ALCOVE in the
category learning literature we expected that a similar learning trap
would affect human learners. However, it is possible that human
learners have more sophisticated learning strategies that help them
avoid these types of costly errors when adapting their behavior to
a task environment.

Method

Participants. One hundred one participants (48 female; 53
male) were recruited via Amazon Mechanical Turk. Preliminary
power calculations indicated that 50 participants per condition
would allow us to consistently detect a difference of 30% or
greater of participants falling into the learning trap. Participants
received $1.25 for participation and received a performance-based
bonus that ranged up to $1.80. Two participants indicated that they
used an external memory device (e.g., pen and paper) during the
task, and four required more than two attempts to pass a postin-

structions quiz. These participants were excluded from further
analyses.

Stimuli. Stimuli were computer-generated cartoon bees that
varied on four binary dimensions; they had two or six legs, a
striped or spotted body, single or double wings, and antennae or no
antennae, for a total of 16 unique stimuli. Example stimuli are
shown in Figure 4. Two of the four dimensions were chosen as
relevant, counterbalanced across participants. Of the four possible
combinations of values on these two dimensions, one was chosen
at random; stimuli with this combination of values were “danger-
ous,” and the remaining stimuli were “friendly.”

Procedure. The experiment resembled a standard category-
learning paradigm (e.g., Nosofsky et al., 1994), but with an added
component of approach–avoid decision making. Participants
played the role of a beekeeper collecting honey from several
beehives. They were told that each hive contained a single variety
of bees, and that while most hives contained friendly bees that
would give them honey, some hives had been invaded by danger-
ous bees that would sting them if they tried to harvest.

On each trial, participants visited a new beehive, and were
shown one of the bees in the hive. Based on the bee’s appearance,
they then had to choose either to attempt to harvest honey from the
bee variety in that hive or to avoid the hive. When participants
chose to harvest, they received honey and added $0.02 to their
bonus if the bee variety was friendly, but were stung and lost $0.10
from their bonus if it was dangerous. When participants chose to
avoid a hive, they gained $0.00. Participants started the game with
a bonus of $0.40.

In the learning phase, participants encountered each of the 16
bee varieties four times, for a total of 64 trials. They were informed
of the number of trials, and the number of remaining trials was
displayed throughout learning. While trials were not overtly sep-
arated into blocks, each of the 16 bee varieties was encountered in
each block of 16 trials. Within a block, stimuli were randomized
with the condition that every eight stimuli contained two danger-
ous and six friendly bee varieties.

Participants were split into two conditions, which differed in the
feedback received upon avoiding a beehive in the learning phase.
In the contingent condition, no feedback was provided when a
participant avoided a hive. In the full-information condition, par-
ticipants were informed of whether the bee variety was friendly or
dangerous and of what their payoff would have been had they
harvested the hive.

The learning phase was followed by a 32-trial surprise test
phase. During the test phase, participants encountered each variety
twice and chose to harvest or avoid hives as before, but received
no feedback about the outcomes of their actions and were not able
to see changes to their bonus. Stimuli were ordered using the same
randomization procedure as the learning phase. This phase pro-
vided a comparison of learning under equivalent conditions.

After the test phase, participants were informed of their total
bonus, and were asked two final questions: “About what percent-

2 Experiment and analysis code for all experiments is available at https://
github.com/NYUCCL/LearningTrap. Data from all experiments is avail-
able at https://osf.io/hrb3u/?view_only�d374ae90615d4e5993ee1c502493
673d. All experiments were approved by the NYU Institutional Review
Board (IRB-FY2016-231 - Active Learning in Dynamic Task Environ-
ments).
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Figure 3. ALCOVE-RL model simulations with constructivist coding in
the absence of feedback, compared with the standard contingent-
information condition. Panels show the proportion of model runs adopting
the correct two-dimensional strategy or one of the one-dimensional learn-
ing traps in each of the 20 learning blocks and the test block. Compared
with the standard model, constructivist coding causes the model to fall into
the attentional learning trap far more often. See the online article for the
color version of this figure.
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age of beehives do you think contained dangerous bees?” and
“Which features do you think were useful in deciding whether a
bee variety was friendly or dangerous?” For the first question,
participants entered a percentage between 0 and 100, and for the
second question participants could choose any combination of the
four features using check boxes.

Results

After exclusions, there were 48 participants in the continent-
information and 47 participants in the full-information condition.
Figure 5 shows participants’ behavior over the four blocks of
learning and during the test phase. While all statistical analyses use
continuous measures of performance, for the purpose of visualiza-
tion we categorized participants in each block based on whether
they followed the correct two-dimensional rule or a one-
dimensional rule indicative of a learning trap. Unlike in our model
simulations, where we required perfect adherence to a rule for a
model to be given a classification, we classified participants as
following a given rule if 15 of 16 choices for a block adhered to the
rule (30 of 32 choices for the test phase). Alternative cutoff
thresholds yield qualitatively similar results.

We statistically compared the conditions using a Bayesian pa-
rameter estimation approach (A. Gelman et al., 2013). For Exper-
iment 1, we used Bayesian equivalents of standard two-sample t
and z tests. For continuous measures we modeled the data from the
two conditions as being drawn from independent normal distribu-
tions with unknown mean and standard deviation. We gave the
condition means weakly informative priors of Normal (.5, 1), and
the condition standard deviations priors of Normal (.0, 1) truncated
at zero. For binary measures we adopted a beta-binomial model in
which each condition’s proportion was drawn independently from
a Beta (2, 2) prior, and the data was modeled as Bernoulli trials
given the condition’s proportion.

All models were implemented and fit using the Stan modeling
language (Carpenter et al., 2017), which performs Bayesian infer-
ence using Hamiltonian Monte Carlo sampling. For each model we
ran four independent chains of Monte Carlo sampling for 10,000
samples, the first 5,000 samples of which we discarded as “burn-
in.” Model convergence was confirmed using Stan’s built-in R̂
statistic.

For comparisons between conditions we report 95% posterior
credible intervals (CI) for the difference between the conditions.
Credible intervals that exclude zero can be interpreted as indicat-
ing high confidence that two conditions differ.

Early in the task, participants had little information and had to
accrue experience to behave effectively later. In the first block of
learning, participants in the contingent-information condition ap-
proached prospects on 75% of trials, while those the full-
information condition approached only 58% of the time, CI [.07,
.22]. This suggests participants valued the information that was
gained by approaching, in line with other recent findings that
people are information-seeking in simple decision-making tasks
(Rich & Gureckis, 2017; Speekenbrink & Konstantinidis, 2015;
Wilson, Geana, White, Ludvig, & Cohen, 2014).

As Figure 5 shows, participants increasingly adopted either the
correct strategy or an inferior one-dimensional strategy as learning
progressed. In the contingent-information condition, where no
feedback was received about avoided prospects, participants
tended toward one-dimensional strategies. In the full-information
condition, they tended toward the correct two-dimensional strat-
egy. Interestingly, the degree of dissimilarity between full-
information and contingent-information behavior, and degree to
which people fall into the learning trap, are both greater than in our
simulations of the ALCOVE-RL model. While our explorations of
ALCOVE-RL were intended to refine our understanding of the
learning trap, and not to quantitatively fit human behavior, this
hints that some aspects of people’s behavior in the task, are not
captured by the standard ALCOVE-RL model. Intriguingly, the
simulations of ALCOVE-RL with constructivist coding appear
qualitatively closer to people’s behavior in both the current exper-
iment and Experiment 2.

To create a numerical measure of this divergence of behavior,
we calculated two behavioral “scores.” The two-dimensional
(2D) score denoted the proportion of a participant’s choices that
were consistent with the true, 2D task structure, and was equiv-
alent to proportion correct choices. The one-dimensional (1D)

Figure 4. Examples of the stimuli used in Experiment 1, with opposite
values on all four binary dimensions. See the online article for the color
version of this figure.
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Figure 5. Participant behavior in the Experiment 1 beehive decision-
making game. Panels show proportion of participants adopting the correct
two-dimensional strategy or one of the one-dimensional learning traps in
each of the four learning blocks and in the test phase. Participants were
coded as using a two-dimensional or one-dimensional strategy if at least
15/16 of their choices in a block were consistent with that strategy. See the
online article for the color version of this figure.
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score denoted the proportion of participant’s choices that were
consistent with an attentional learning trap. This score was
calculated by finding the proportion of responses that were
consistent with each of the two 1D rules that participants might
form on the relevant task dimensions, and then taking the
maximum over these two proportions. A value of 1 on the 2D
or 1D score indicates that participants followed the respective
rule perfectly, and a value of .5 is expected if participants
behaved randomly. If participants followed a 2D rule perfectly
they would receive a 1D score of .75, and vice versa.

The Bayesian model posteriors plotted in the upper panels of
Figure 6 confirm the qualitative results in Figure 5. In the test
phase, participants in the contingent-information condition had an
average 1D score of .83, while those in the full-information con-
dition had an average score of .75, CI � [.03, .14]. In contrast,
participants in the contingent-information condition had an aver-
age 2D score of .72, while those in the full-information condition
had a higher score of .82, CI � [.02, .18].

This tendency to fall into a learning trap in the contingent-
information but not full-information condition extended, albeit less
clearly, to the explicit posttask questions, as seen in the lower
panels of Figure 6. Participants in the contingent condition re-
sponded on average that 37.6% of prospects were bad (one par-

ticipant was excluded for providing a negative response), while
participants in the full-info condition responded that only 28.2%
were bad, CI � [.02, .16]. The true proportion was 25%. This
supports the conjecture that action-dependent feedback can affect
a person’s beliefs about the environment, and is consistent with the
findings of Fazio et al. (2004) that approach–avoid learning leads
to the belief that the environment is more negative than reality. In
addition, only 22.9% of participants in the contingent-information
condition identified the right combination of relevant features,
while 40.4% of participants in the full-info condition did so,
though the true difference is plausibly zero, CI � [�.02, .33].
Contingent-information participants identified only one of the rel-
evant dimensions (and no irrelevant ones) in 37.5% of cases, while
full-information participants did so only 25.5% of the time, al-
though this difference also did not lie outside the 95% credible
interval, CI � [.07, .29].

In summary, Experiment 1 provided preliminary evidence
that people are susceptible to an attentional learning trap that
emerges in cases of choice-contingent feedback. In the follow-
ing sections we test the robustness and generality of the learn-
ing trap, while also exploring ways to prevent people from
entering the trap.

Full info.

Contingent

58.008.057.0

1D rule score at test

Full info.

Contingent

0.65 0.70 0.75 0.80 0.85

2D rule score at test

Full info.
Contingent

04530352

Percent of bees believed to be dangerous

Full info.
Contingent

5.04.03.02.0

Proportion of participants identifying a single relevant dimension

Full info.
Contingent

5.04.03.02.0

Proportion of participants identifying both relevant dimensions

Figure 6. Comparisons of several measures of behavior between the contingent-information and full-
information conditions of Experiment 1. Points indicate posterior population mean from Bayesian inference, and
error bars indicate 95% credible intervals. All measures support the conclusion that participants with contingent
information fell into the attentional learning trap more readily than those with full information. See the online
article for the color version of this figure.
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Testing the Robustness of the Attentional
Learning Trap

In Experiment 2, we introduced three interventions that we
hypothesized might affect the severity of the attentional learning
trap. Our goals in testing these interventions were twofold: first, to
test whether the attentional learning trap is robust over a variety of
stimulus conditions, and second, to investigate whether any of
these interventions may prove effective at preventing the learning
trap, and perhaps serve as a prototype for interventions in applied
settings.

As described in the introduction, learning traps can have harm-
ful consequences in a remarkably wide range of domains, making
it important to study methods of diminishing them. To provide one
example where the attentional learning trap could have harmful
effects, and to preview the cover story for Experiment 2, consider
a company hiring new employees. If there are multiple attributes,
each of which is sufficient to make an applicant suitable for the
job, the fact that learning an applicant’s true value is contingent on
their being hired may mean that only one or a subset of these
factors is ever attended to and learned. This can obviously have a
negative effect on the company’s success. Just as importantly, if
the company learns to attend excessively to a feature like college
attendance that covaries with socioeconomic variables, it can have
negative long-run societal effects as well.

Because the role of exploration in the development of learning
traps is relatively well established, while the role of generalization
has rarely been studied, we focused our three interventions on
slowing generalization from past experience to novel prospects,
rather than on directly increasing exploration. While generalization
is a vital aspect of intelligent behavior, and reducing generalization
is certainly not always beneficial, we hypothesized that decreasing
the speed of generalization would cause people to sample pros-
pects more exhaustively before beginning to avoid those prospects
they believed to be negative, thus reducing the likelihood of falling
into the attentional learning trap.

In the following sections, we first describe the intuitions behind
each intervention, explore them computationally using ALCOVE-
RL, and then test them experimentally with people.

Individuating Prospects

One clear way to decrease generalization and potentially limit
the attentional learning trap is to make stimuli increasingly distinct
and idiosyncratic. When stimuli are more distinctive, people tend
to treat them more as individuals and show increased ability to
learn identification compared with categorization. While identifi-
cation learning is more difficult than categorization with generic
artificial stimuli (Love et al., 2004; Shepard et al., 1961), Medin,
Dewey, and Murphy (1983) found that people were more easily
able to pair unique first names than categorical last names with
photographs of faces. Love et al. (2004) argued that this phenom-
enon could be accounted for with the SUSTAIN model of catego-
rization by assuming that the faces had many distinctive features
beyond those manipulated by the experimenters, which decreased
the similarity among stimuli and thus increased the odds of rep-
resenting each stimulus individually.

In an approach–avoid decision-making task, increased individ-
uation of stimuli should make a person less likely to generalize

information gained from experience with one prospect to decisions
about another. Attention paid to idiosyncratic features will slow
the biasing of attention toward a single dimension, giving the
person more opportunity to explore a variety of stimuli and learn
the true structure of the environment. Essentially, increased indi-
viduation of prospects shifts the task away from category-learning,
and toward learning about whether to approach individual pros-
pects.

Occluding Feature Information

A second approach to decreasing the attentional learning trap
may be to restrict information by randomly occluding some fea-
tures of a prospect such that the decision maker cannot observe
their values. While this intervention could of course impair a
person’s decision-making ability, it could actually improve per-
formance in the long run by causing a greater spread of attention.
E. G. Taylor and Ross (2009) found that participants learned more
about nondiagnostic features in a category-learning task when
features were randomly occluded, and hypothesized that feature
occlusion discourages rapid narrowing of selective attention and
promotes a broader attentional strategy. In the context of approach
decisions, if a person is attending strongly to a dimension that is
occluded, he or she may be forced to use other features, which may
lead to the discovery that they are relevant. Even when the favored
features is not occluded, the possibility of their future absence may
cause people to be less quick to rely solely on one feature.

Increasing Noise

Stochasticity in prospect outcomes is the driving force behind
the hot stove effect and underweighting of rare events; without it,
experience is never misleading, and there is no possibility for an
incorrect belief about a prospect to develop. When negative beliefs
formed about one prospect can generalize to another prospect,
rather than simply to the same prospect at a later time, stochasticity
is no longer required for biased behavior to result. Instead, it is
plausible that a small degree of noise might aid the learning
process in the long term. Noise is used in optimization algorithms
such as simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983)
to overcome learning-trap-like local minima. Gureckis and Love
(2009) found that noise improved human performance in a dy-
namic decision-making task that required people to discover a
nonobvious solution to a problem. A noisy outcome, while poten-
tially triggering false belief in the region the experienced prospect,
might also cause a reallocation of attention that could have glob-
ally beneficial consequences. Such an experience might cause a
nonattended but useful dimension to attract attention, setting the
agent on a new trajectory of behavior and learning and pulling it
out of a learning trap.

Modeling Debiasing Interventions

To test the potential effect of these interventions on generaliza-
tion and behavior, we performed model simulations comparing
them to the basic contingent-information condition. To modify the
model for the individuation condition, we added an extra dimen-
sion with 16 nominal values representing idiosyncratic features of
each stimulus (following Love et al., 2004). For the occluded-
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dimension condition, on 25% of trials a randomly chosen dimen-
sion was masked such that it did not contribute to the model’s
network activation and its attention weight was not updated. For
the noisy condition, on 5% of trials the potential outcome was
flipped from the positive outcome to the negative outcome or vice
versa.

The models were simulated for a learning phase of 20 blocks,
followed by a one-block test phase with no learning updates, where
no dimensions were masked in the occluded-dimension condition
and the individuating dimension was masked in the individuation
condition. Results are plotted in Figure 7.

In the test phase, all three interventions lead to a greater pro-
portion of the models adopting the correct two-dimensional rule.
Interestingly, in early blocks the occlusion and increased noise
interventions inhibit learning; while the model is less likely to
enter the learning trap, it is also slower to learn the correct strategy.
This indicates that these interventions represent a trade-off, allow-
ing (potentially) superior long-term performance but at the cost of
worse short-term performance.

Experiment 2

In Experiment 2, we tested whether individuating prospects,
occluding feature information, or adding noisy outcomes would
affect the degree to which participants fell into the attentional
learning trap. In addition, to further test the generality of the
learning trap we introduced a more life-like “job application”
cover story, lengthened the training phase, and reduced the relative
penalty for approaching negative prospects.

Prior to conducting Experiment 2, we conducted two large pilot
experiments investigating different ways of implementing the in-
terventions (see Intervention Pilot Experiments in the supplemen-
tal material available online). These pilot experiments showed the
learning trap to be robust and did not show the interventions to be
effective, foreshadowing the results of Experiment 2. Experiment
2 thus represents a final, large-n effort to replicate the learning trap
and document the degree of effectiveness of the interventions.

Method

Participants. Four hundred participants (176 female; 220
male) were recruited via Amazon Mechanical Turk. A power
analysis showed that a sample size of about 80 participants per
condition would allow us to reliably detect a 25% difference in
percentage of people falling into the learning trap, or on continu-
ous measures an effect size of .45. Participants received $2.00 for
participation and received a performance-based bonus that ranged
up to $1.68. Forty participants were excluded for requiring more
than two attempts to pass a postinstructions quiz.

Stimuli. Stimuli were fake job applications that varied on four
binary dimensions. Applicants had a “degree” in “business” or
“economics”, a “past employer” of either “Hudson Inc.” or “Nile
Co.;” a “skill” in either “computer programming” or “graphics
editing”, and a “past position” of either “product development” or
“market research,” for a total of 16 unique stimuli. Example
stimuli are shown in Figure 8. Two of the four dimensions were
chosen as relevant, counterbalanced across participants. Of
the four possible combinations of values on these two dimensions,
one was chosen at random; stimuli with this combination of values
were “unsuitable” applicants, while the remaining stimuli were
“suitable.”

Procedure. Experiment 2’s procedure is similar to that of
Experiment 1. In this experiment, participants played the role of a
recruiter considering a series of job applications. They were in-
structed that their goal was to generate revenue for their company.

In the learning phase, participants encountered each of the 16
unique stimuli eight times, for a total of 128 trials. The number of
applications (i.e., trials) remaining was displayed throughout the
learning phase. As in Experiment 1, stimuli were ordered such that
each block of 16 contained all 16 stimuli, and each subblock of
eight contained two negative and six positive stimuli, with stimu-
lus order otherwise randomized.

On each trial, participants were presented with an application.
The application started out blank, and participants had to press the
space bar four times to reveal each of the four dimensions in a

Contingent Individuated Occluded Noisy
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Figure 7. ALCOVE-RL model simulations of approach–avoid decision making in a basic contingent-
information setting, and with three interventions. Panels show the proportion of model runs adopting the correct
two-dimensional strategy or one of the one-dimensional learning traps in each of the 20 learning blocks and the
test block. See the online article for the color version of this figure.
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random order. This was done to reduce any bias toward attending
to dimensions near the top of the application. The participant then
had to choose whether to accept or reject the application. Accept-
ing a suitable applicant generated revenue of $1,000 for the com-
pany, while accepting an unsuitable applicant caused a loss of
$3,000. Rejecting an applicant caused no change in revenue.
Revenue began at $50,000, and was converted to a cash bonus at
the rate of $0.01 per $1,000.

Participants were split into five conditions. In the full-
information condition, participants who rejected an applicant were
informed of whether the applicant would have been suitable or
unsuitable, and how the company’s revenue would have changed.
In the contingent condition, participants were given no feedback
upon rejecting an applicant.

In the three intervention conditions, feedback during the
learning phase was contingent as in the contingent condition.
However, as shown in Figure 8, the stimuli were modified in
ways hypothesized to reduce the learning trap. In the individ-
uation condition, participants were instructed that the applica-
tion system had a feature that assigned each of the 16 unique
dimension value combinations a random unique icon to help
them keep track of what they had observed. These icons were
small pictures of animals that on some trials were displayed
below the four dimensions, as shown in Figure 8. The icons
were shown on 90% of trials in the first block of learning,
which gradually decreased to 0% by the last block, so that
participants could not rely solely on the icons.

In the occluded condition, on some trials one of the four dimen-
sions was chosen at random and covered with a black bar (see
Figure 8). If the participant hired the applicant, the hidden dimen-
sion was then revealed. This intervention was applied to 50% of
trials in the first five blocks of training, and then was removed for
the last three blocks.

In the noisy condition, applicant outcomes were changed
from suitable to unsuitable or unsuitable to suitable on some
randomly selected trials. Participants were informed that par-
ticipants who appear suitable might occasionally be unsuitable,
and vice versa. This intervention was applied to 10% of trials in
the first five blocks of training, and then was removed for the
last three blocks.

The exact design of these interventions was informed by the
data collected in our pilot experiments (described in the supple-
ment). However, determining the exact difference in effect be-
tween subtly different interventions would require prohibitively
large sample sizes, and the interventions were thus also guided by
our own intuitions.

In all conditions, the learning phase was followed by a surprise
32-trial test phase, using the same randomization procedure as the
learning phase. Participants chose to accept or reject as before, but
received no feedback about the outcomes of their actions and were
not able to see changes to revenue. Both interventions were also
removed during the test phase so that it was equivalent across all
five conditions.

After the test phase, participants were informed of their total
bonus. As in Experiment 1, they were asked “About what
percentage of applicants do you think were unsuitable?” and
“Which fields do you think were useful in deciding whether an
applicant was suitable or unsuitable?” We also added a third
posttask question, which asked participants whether they be-
lieved they had learned completely how to use the applicant
features to determine which applicants were suitable. Partici-
pants chose from a drop-down list either “I think I learned
completely how the features determined suitability,” “I think
there may have been aspects of applicant suitability that I did
not learn,” or “I think there were definitely aspects of applicant
suitability that I did not learn.”

Results

After exclusions, there were 73 participants in the contingent-
information condition, 66 in the full-information condition, 72 in
the individuation condition, 70 in the occluded condition and 79 in
the noisy condition. None of the experiment’s results are qualita-
tively affected when excluded participants are included. Figure 9
shows participants’ behavior over the eight blocks of learning and
the test phase, using the same threshold for classifying participants
as following a 2D or 1D strategy described in Experiment 1. We
report first on the replication of the contingent-information and
full-information conditions, followed by the results of the inter-
ventions.

Experiment 2 included five conditions, increasing the risk of
what from a frequentist perspective would be considered Type I
errors due to multiple comparisons. To reduce this risk and im-
prove the quality of our estimates, we adopted a Bayesian multi-
level modeling approach to our analyses of Experiment 2, which
assumes that the group means for each condition are drawn from
the same overarching population distribution. This causes the
group mean posteriors to be drawn toward each other during
inference to a degree determined by the variability of the data,
resulting in better estimates and fewer “false positives” (A.
Gelman, Hill, & Yajima, 2012).

Figure 8. Examples of the stimuli used in Experiment 2. From left: an example stimulus from the contingent-
information or full-information conditions, two example stimuli from the individuated condition, and an example
stimulus from the occluded condition. See the online article for the color version of this figure.
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For continuous measures, rather than modeling the data as being
drawn from independent normal distributions, we assumed that the
condition means were themselves drawn from a population-level
normal distribution with unknown mean and variance. We gave the
population distribution mean a Normal(0.5, 1) prior, and the pop-
ulation distribution standard deviation a Normal(0, 0.5) distribu-
tion truncated at zero.

Similarly, for binary measures we posited that rather than the
condition proportions being drawn independently, they were
drawn from the same population-level beta distribution with un-
known parameters. We reparameterized the standard Beta(�, 	)
distribution in terms of mean 
 and precision �, where � � 
� and
	 � (1�
)�, and specified a Beta(2, 2) prior on 
 and a
Gamma(1, .1) prior on �.

We again estimated all models using Stan, with four indepen-
dent chains of 10,000 samples.

As in Experiment 1, participants with contingent information
were highly likely to accept candidates in the first block of learn-
ing, accepting 71% of applicants. Participants with full informa-
tion were again less likely to do so, accepting 64%, CI [.02, .12],
and were less likely to accept candidates than participants in the
intervention conditions as well, with all CI’s excluding zero.

Measures of the degree to which participants fell into the learn-
ing trap across conditions are plotted in Figure 10. Comparing the
contingent and full-information conditions, the results fully repli-
cate Experiment 1. In the test phase, participants in the two
conditions diverged in their tendencies to adopt an incorrect one-
dimensional strategy or the correct 2D strategy. Full-information
participants had an average 1D score of .75, while contingent-
information participants averaged .86, CI [.04, .15]. The pattern for
the 2D score was reversed; full-information participants reached
an average 2D score of .87, while those in the contingent-
information condition reached a lower score of .78, CI [.03, .14].

While 25% of applicants were in fact unsuitable, contingent-
information participants on average estimated this percentage to be
36.5%. Full-information participants estimated the percentage to be
24.4%, much closer to the true value and lower than the contingent-
information condition, CI [.07, .17]. Full-information participants
were also more likely to correctly identify the two relevant dimen-
sions, CI [.16, .46], while contingent-information were more likely to
identify a single relevant dimension, CI [.27, .55].

Only around 10% of participants in the contingent and full-
information conditions reported that there were “definitely”
aspects of applicant suitability they did not learn, so we pooled
these participants with those who reported that there “may”
have been aspects they did not learn. In the contingent-
information condition 45.2% of participants believed they
“learned completely” how features determined suitability, while
in the full-information condition 60.6% of participants believed
they had learned completely. Full information may cause
slightly more confident learning, but the credible interval for
the difference contingent information does not exclude zero, CI
[�.02, .29]. Of the contingent-information participants who
thought they had fully learned the task, 57.6% (19 out of 33)
had in fact fallen into the learning trap. This suggests that in
many cases participants entered a learning trap not just because
it yielded “good-enough” performance, even while suspecting it
to be incomplete, but because they believed it to represent the
true structure of the environment.

Over all, as seen in Figure 10, the three interventions did not
prevent the learning trap, or “prevented” the learning trap only
insofar as they prevented effective learning altogether.

Specifically, the occlusion intervention appeared to have little
effect, creating no difference outside the 95% credible interval
from the contingent condition on any measure. The individuation
and noise interventions did make people less likely to adopt a 1D
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Figure 9. Participant behavior in the Experiment 2 job application decision-making game. Panels show
proportion of participants adopting the correct two-dimensional strategy or one of the one-dimensional learning
traps in each of the eight learning blocks and in the test phase. Participants were coded as using a two-
dimensional or one-dimensional strategy if at least 15/16 of their choices in a block were consistent with that
strategy. See the online article for the color version of this figure.
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Noisy
Occluded

Individuated
Full info.

Contingent

58.008.057.007.0

1D rule score at test

Noisy
Occluded

Individuated
Full info.

Contingent

9.08.07.0

2D rule score at test

Noisy
Occluded

Individuated
Full info.

Contingent

0403

Percent of applicants believed to be unsuitable

Noisy
Occluded

Individuated
Full info.

Contingent

6.04.02.0

Proportion of participants identifying a single relevant dimension

Noisy
Occluded

Individuated
Full info.
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6.04.02.0

Proportion of participants identifying both relevant dimensions

Noisy
Occluded

Individuated
Full info.

Contingent

6.04.02.0

Proportion of participants believing they completely learned the task

Figure 10. Comparisons of several measures of behavior across the five conditions of Experiment 2. Points
indicate posterior population mean from Bayesian inference, and error bars indicate 95% credible intervals. All
measures are support the conclusion that participants with contingent information fell into the attentional
learning trap more readily than those with full information, but that the interventions did not lead to more robust
learning compared with the contingent-information condition. See the online article for the color version of this
figure.
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rule, CI [.01, .13] and CI [.03, .16], respectively. Compared with
contingent-information condition participant, people in these con-
ditions had lower 1D scores during the test phase. However, this
was a hollow victory in that participants in these conditions also
both had lower 2D scores at test, CI [.05, .17] and CI [.06, .17]. In
other words, participants who experienced these interventions had
difficulty learning any stable structure of the task, correct or
incorrect. This impression was reinforced when we asked partici-
pants whether they had learned the task completely. Participants in
both the individuated and noisy conditions were less likely than
those in the contingent-information condition to report that they
had, CI [.07, .36] and CI [.12, .39].

Finally, compared with participants in the full-information con-
dition, participants in all three intervention conditions had lower
2D scores during the test phase, were less likely to accurately
identify the two relevant dimensions following the test, believed a
greater proportion of applicants were unsuitable, and were less
likely to report believing that they had learned completely how to
determine applicant suitability, with the 95% credible intervals for
all differences excluding zero. In other words, none of the inter-
ventions allowed people to obtain the accurate understanding of
the environment possible through receiving full feedback follow-
ing each choice.

General Discussion

Across two experiments and hundreds of participants (plus
supplementary pilot experiments) we found evidence for a robust
and novel learning trap. The attentional learning trap we describe
is the joint product of the limits on exploration presented by
choice-contingent feedback tasks and the inductive biases inherent
in selective attention. Because the learning trap is related to the
information restrictions of limited exploration, we found that it
rarely occurred when people received full feedback regardless of
their choices. Interestingly, the learning trap persisted when pros-
pects were individuated, when prospect features were occasionally
occluded, and when noise was added to prospect outcomes. Below,
we address why these interventions did not prevent the learning
trap and how learning traps might be diminished, as well as
additional situations where we might expect learning traps to form.

The Potential for Reducing Learning Traps

The three interventions implemented in Experiments 2 did not,
in any significant way, prevent participants from falling into the
attentional learning trap. To the extent that they prevented rapid
generalization across a single dimension, they also seemed to stop
effective generalization entirely. That is, they prevented people
from learning both the true, two-dimensional structure and the
incomplete one-dimensional structure. This was evidenced both by
participants’ poor performance and their self-reports. While we
believe future attempts at these sorts of interventions may prove
more fruitful, our results do offer one possible lesson: decreasing
generalization may be the wrong, or at least a risky, approach to
reducing learning traps. As mentioned in the introduction, learning
cannot occur without generalization (Mitchell, 1980). Thus, the
challenge is to balance reduced generalization such that incorrect
beliefs aren’t quickly formed, but not so much that the correct
beliefs are never formed.

An alternative approach is to directly increase exploration.
Rather than slowing the process of learning, this approach seeks to
increase people’s willingness to continue enduring costs to gain
information. The full-information conditions of both experiments
showed that accurate learning is possible in our tasks given enough
information, suggesting this approach could be effective.

Exploration might be increased in multiple ways. First, recent
studies show that human exploration is sensitive to the future
usefulness of gaining information (Rich & Gureckis, 2017; R. C.
Wilson et al., 2014). Thus, increasing the salience or perceived
number of future choices in an environment might increase explo-
ration and decrease false beliefs. Second, exploration can be
prompted by curiosity, which acts as an innate drive toward
information-seeking (Berlyne, 1966; Kidd & Hayden, 2015; Loe-
wenstein, 1994). This means that causing a greater intrinsic inter-
est in a domain may be another tool for decreasing learning traps.
Third, one might increase exploration by decreasing, at least
temporarily, the drive for reward. Experiments with both animals
(Tolman, 1948) and humans (Schwartz, 1982) have shown that
excessive drive for external reward can prevent decision makers
from learning the true structure of the world. If people can be given
the opportunity to explore an environment in a disinterested man-
ner, they will have a greater opportunity to build an accurate world
model and will be less susceptible to learning traps.

Finally, keep in mind that the complete prevention of learning
traps is often implausible and undesirable, because it requires
excessive exploration at the cost of exploitation (Levinthal &
March, 1993). If the primary goal is to maximize positive out-
comes, rather than simply possess the most accurate beliefs about
the world, it may make sense to allow the possibility of false
beliefs (Le Mens & Denrell, 2011). Further research is needed to
reduce biases in organizational and social behavior as much as
possible, but some degree of bias may be an unavoidable byprod-
uct of learning from experience.

The Possibilities of New Learning Traps

While the review in our article attempted to integrate many past
phenomena that are interpretable as a “learning trap,” one inter-
esting question is if there are other situations where such phenom-
ena may occur. A number of possibilities come to mind, all having
to do with more complex forms of generalization than we consid-
ered so far. For instance, people represent some real-world cate-
gories in terms of taxonomic hierarchies. Within these hierarchies
there is often a psychologically prioritized level of abstraction, the
basic level, that tends to be most naturally used when naming an
object (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976;
Waxman (1990)). Dog, for example, is a basic level category for
most people, while animal is a superordinate category and golden
retriever is a subordinate category. Because people tend to gener-
alize at the basic level, there is a risk that negative attributes from
single experience will be learned for an entire basic-level category,
even if it truly applied only to a subordinate category.

Categories are also often connected to naive theories and causal
beliefs, which can shape a person’s understanding of the category
and its members (G. L. Murphy & Medin, 1985; Rehder & Hastie,
2001). One common kind of causal theory is that members of a
category share a deep underlying cause, or essence, that gives rise
to their other properties (S. A. Gelman, 2004; Medin & Ortony,
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1989). Essentialist beliefs are observed for natural kinds and for
social categories such as race and gender (Allport, 1954;
Hirschfeld, 1995; M. G. Taylor, 1996; M. G. Taylor, Rhodes, &
Gelman, 2009). Because the attributes of instances of essentialized
categories are believed to be caused by a shared essence, people
tend to generalize a property of one instance to other instances
more for essentialized categories than for nonessentialized ones
(S. A. Gelman, 1988; S. A. Gelman & Coley, 1990). This may
make essentialized categories particularly susceptible to learning
traps. In the domain of social categories, Denrell (2005) has
described how the hot stove effect can lead to the development of
negative perceptions of outgroups. Future work could examine
whether essentialism plays a role in this type of social learning
trap, and whether reductions in essentialist beliefs might help to
prevent it.

Conclusion

Learning allows people to behave adaptively in a world that
cannot be completely known a priori. But as we show in this
report, learning processes cannot be relied on to converge steadily
to true belief as a learner gains experience. When learning from
experience influences reward-seeking choices, and reward-seeking
choices produce the experience for further learning, the entire
learning–choosing system can become stuck in patterns of poor
decisions and false beliefs. In the words of Levinthal and March
(1993), “learning has its own traps.”

In this article, we have tried to clarify the link between choice
processes and learning processes in the development of learning
traps. We have shown how, in environments with explore–exploit
trade-offs created by choice-contingent feedback, many apparent
suboptimalities are natural consequences of people’s inductive
biases. These inductive biases, rather than being flaws in the
learning system, are prerequisites for effective generalization
(Mitchell, 1980).

Context of Research

This project emerged out of a broader family of projects exam-
ining how humans balance exploration and exploitation in com-
plex environments. While some of our other studies have focused
on how people use environmental cues to determine when to
explore more or less (e.g., Rich & Gureckis, 2017), this project
aimed to understand how patterns of exploration affect beliefs
when the environment is more complex than a simple repeated
choice task. In doing so, it also addressed a perceived gap in the
categorization literature, which has rarely looked closely at the
challenges of learning via choice-contingent feedback. We believe
a more complete understanding of exploratory choice can be
gained by unpacking the two-way interaction between exploration
and beliefs about the environment, and hope to continue to inves-
tigate this relationship as outlined in the Discussion.

This project also intersects with active and self-directed learn-
ing, another research focus of our lab (T. M. Gureckis & Markant,
2012). While active control over the contents of learning often
produces gains over passive learning, learning traps provide a
counterpoint: If the learner can choose to avoid stimuli that are
expected to be unpleasant, active learning may lead to worse
learning outcomes than passive exposure.
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