
Grounding Compositional Hypothesis Generation in Specific Instances
Neil R. Bramley1 (neil.bramley@nyu.edu), Anselm Rothe1 (anselm@nyu.edu)

Joshua B. Tenenbaum2 (jbt@mit.edu), Fei Xu3 (fei xu@berkeley.edu), Todd M. Gureckis1 (gureckis@nyu.edu)
1Department of Psychology, NYU, New York, NY, 2Brain & Cognitive Sciences, MIT, Cambridge, MA, 3Department of Psychology, UC Berkeley, CA

Abstract
A number of recent computational models treat concept learn-
ing as a form of probabilistic rule induction in a space of
language-like, compositional concepts. Inference in such mod-
els frequently requires repeatedly sampling from a (infinite)
distribution over possible concept rules and comparing their
relative likelihood in light of current data or evidence. How-
ever, we argue that most existing algorithms for top-down sam-
pling are inefficient and cognitively implausible accounts of
human hypothesis generation. As a result, we propose an
alternative, Instance Driven Generator (IDG), that constructs
bottom-up hypotheses directly out of encountered positive in-
stances of a concept. Using a novel rule induction task based
on the children’s game Zendo, we compare these “bottom-
up” and “top-down” approaches to inference. We find that
the bottom-up IDG model accounts better for human infer-
ences and results in a computationally more tractable inference
mechanism for concept learning models based on a probabilis-
tic language of thought.
Keywords: discovery; program induction; probabilistic lan-
guage of thought, active learning; hypothesis generation

A number of recent papers argue that people come to
learn abstract hypotheses about the world through inference
in a “probabilistic language of thought” (Goodman, Tenen-
baum, & Gerstenberg, 2015). That is, a system of con-
ceptual primitives and stochastic rules for how they can be
combined. Such models capture the fact that human think-
ing exhibits language-like compositionality and systematicity
(Fodor, 1987; Lake, Salakhutdinov, & Tenenbaum, 2015), al-
lowing us to combine and repurpose simple concepts to con-
struct richer ones (Goodman, Tenenbaum, Feldman, & Grif-
fiths, 2008; Piantadosi, Tenenbaum, & Goodman, 2016). In
order to model inference in such models it is usually assumed
that people approximate a posterior distribution over possi-
ble abstract expressions using stochastic search algorithms
(Hastings, 1970). However, such approaches usually require
the top-down generation of very large numbers of samples to
stand a good chance of including the true hypothesis making
them implausible algorithmic level accounts of human learn-
ing and hypothesis generation (Lewis, Perez, & Tenenbaum,
2014; Schulz, 2012).

However, assuming humans are endowed with some type
of language-like representation for forming abstract hypothe-
ses, one would assume that this language can be of use not
only for inferring abstract hypotheses or ideas but also to
describe concrete states of affairs in the world and specific
instances. For example, looking at a visual scene one can
describe various facts that hold (e.g., “the coffee cup is on
top of the table”, “the window is closed”). Such observa-
tions are essentially mental statements about the “data” one
is perceiving. Given this ability, it seems it would be useful
for a symbolic inferential hypothesis system to use these de-
scriptions to help “seed” the hypothesis generation and search

process. So for instance instead of starting from scratch and
sampling repeatedly from a prior distribution, a learner might
first start by considering hypotheses that match some of all
of the factual statements considered about the data/world. By
exploring potential generalizations and restrictions on those
abstract hypotheses, one can more efficiently arrive at some
deeper abstract causal knowledge (e.g., did the person leave
their office in a hurry?) because each hypothesis is, at mini-
mum, consistent with known data.

In this paper, we explore a middle ground between top-
down sample-driven and bottom-up instance-driven concept
learning. We propose a instance driven grammatical hypoth-
esis generator, and demonstrate that it provides a closer char-
acterization of human generalizations than a fully top-down
approach, as well as being more computationally efficient.

Discovery learning in Zendo
To explore this idea, we developed a new task environ-

ment that, while formally specified, is open ended enough
to provide a challenging and naturalistic test bed for concept
learning. The task is inspired by the tabletop scientific learn-
ing game ZendoTM. In it, learners both observe and create
their own scenes, which are arrangements of 2D triangular
objects called cones on a flat surface (as depicted in Fig-
ure 1). The goal is to identify a hidden rule that divides scenes
into rule-following and not rule-following scenes. Scenes
could contain a varied number of cones, each of which had
two immutable properties: size∈ {small, medium, large} and
color∈ {red, green, blue} as well as having continuous scene-
specific x∈(0,8), y∈(0,6) positions and orientations∈(0,2π)1.
The scenes are subject to gravity meaning there are familiar
physical constraints on how they might be arranged. In ad-
dition to cones’ immutable and positional properties, scenes
also admit many complex properties arising from the relative
features and arrangement of different cones. For instance,
subsets of cones might share a feature value (i.e., be the same
color, or have the same orientation) or be ordered on an-
other (i.e., be larger than, or above) and pairs of cones might
have properties like pointing at one another or touching. This
results in a rich space of potential concepts that require an
expressive conceptual language. Following Piantadosi et al.
(2016), we assume the true latent space of possible concepts
in our task are those expressible in first order logic combined
with lambda abstraction and full knowledge of the potentially
relevant features of the scene. Lambda abstraction provides
a simple general formalism for binding entities to variables
(Church, 1932). For the current context, binding sets of cones

1We round these to one decimal place in evaluating rules to allow
for perceptual uncertainty.

Figure 1: Three examples of rules in our task in words and lambda
calculus with example scenes below. Yellow stars indicate scenes
that follow the rule, white stars indicate scenes that do not.

to different variables allows our grammar to assert relations
between distinct subsets of the cones in a scene.

Top-down, “guess and check” inference mechanisms
As mentioned above, one solution to the problem of learn-

ing within an infinite hypothesis space is to sample hypothe-
ses by composing them stochastically from an underlying
grammar of sufficient expressivity. Here, we consider a
grammar (specifically a probabilistic context free grammar
or PCFG; Ginsburg, 1966) that can be used to produce any
rule that can be expressed with first-order logic and lambda
abstraction. When set up correctly, “simpler concepts” (i.e.,
those composed of fewer parts, cf. Feldman, 2000), will have
a naturally higher prior probability of being produced and
so will be favored over more complex ones equally able to
explain the data. This is necessary since the setting ensures
there will always still be an infinite number of potential rules
consistent with any data (Gold et al., 1967).

With a PCFG, each hypothesis begins life as a string con-
taining a single non-terminal symbol (here, S) that is replaced
using rewrite rules, or productions. These productions are
repeatedly applied to the string, replacing non-terminal sym-
bols with a mixture of other non-terminal symbols and termi-
nal fragments of first order logic, until no non-terminal sym-
bols remain. The productions are so designed that the result-
ing string is guaranteed to be a valid grammatical expression.
In addition, by having the productions tie the expression to
bound variables and truth statements, our PCFG serves as an
automatic concept generator. Table 1 details the PCFG we
consider in the current paper and Figure 2a gives two exam-
ple PCFG samples. We use capital letters as non-terminal
symbols and each rewrite is sampled from the available pro-
ductions for a given symbol.2 Because some of the produc-
tions involve branching (e.g., B→ H(B;B), see Table 1), the
resultant string can become arbitrarily long and complex, in-
volving multiple boolean functions and complex relationships

2The grammar is not strictly context free because the bound vari-
ables (x1;x2, etc.) are shared across contexts (e.g. x1 is evoked twice
in both expressions generated in Figure 2a).

Table 1: λ-abstraction Based Probabilistic Grammar.

Productions

Start S→ ∃(λxi : A;X) ∀(λxi : A;X) NI(λxi : A;J;X)
Bind additional A→ B S
Expand B→ C H(B;B) ¬(B)
Function C→ =(xi;D1) I(xi;D2) =(xi;x j ;E1)a

I(xi;x j ;E2)a Γ(xi;x j ;E3)a

Feature/value D1→ valueb , feature
(numeric only) D2→ valueb , feature
Feature E1→ feature
(numeric only) E2→ feature
(relational) E3→ feature
Boolean H→ ∧ ∨ . . .
Inequality I→ ≤ ≥ >

<
Number J→ n ∈ Z5

Note: Each production rule maps a capital letter (column 2) to several possible
replacements (right hand columns). Context-sensitive aspects of the grammar: aBound
variable(s) sampled uniformly without replacement from set; expressions requiring
multiple variables censored if only one. b The value is always sampled uniformly from
the support of the feature selected in D.

between bound variables. The probabilities for each produc-
tion in a PCFG can be fit to human judgments, and different
PCFGs containing different primitives and expansions can be
compared. In this way, recent work has attempted to infer the
logical primitives of thought (Goodman et al., 2008; Pianta-
dosi et al., 2016).

What these PCFG approaches have in common is that they
provide a generative mechanism for sampling from a prior
over all possible concepts. However, these sampled “guesses”
must then be tested against data. Unfortunately, many sam-
ples, even from a well tuned PCFG are likely to be tautolog-
ical (i.e., “All cones are red or not red”), contradictory (i.e.,
“There is a cone that is red and not red”), physically impos-
sible (“There are two distinct objects have the same position
and orientation”) or simply inconsistent with whatever data
a learner has already encountered. Indeed, around 20% of
the hypotheses generated by the grammar in Table 1 are tau-
tologies, and 15% are contradictions. For these reasons, the
procedure is inherently inefficient, and typically requires a
very large numbers of samples in order to reliably provide
non-trivial rules.

Instance driven hypothesis generation
Our Instance Driven Generation (IDG) proposal is related

to the PCFG idea but with one major difference. Rather
than generating guesses entirely stochastically, before check-
ing them against the data, we propose that people gener-
ate guesses inspired by an encountered positive example (cf.
Michalski, 1969). Concretely, we propose that learners start
by observing the features of objects in a rule-following scene
and use these to back out a true logical statement about the
scene in a stochastic but truth preserving way. In this way
the learner does not generate uniformly from all possible log-
ical statements, but directly from the restricted space of state-
ments true of the current observation. Figure 2b motivates
this approach. Here a learner begins their hypothesis gen-
eration with an observation of a scene that follows the hid-
den rule. To generate hypotheses as candidates for the hidden
rule, we assume the learner uses the following procedure:

a) Context free generation b) Context based generation

e.g.: #1

#2 #3 #4

Figure 2: a) Example generation of hypotheses using PCFG in Table 1. b) Examples of IDG hypothesis generation based on an observation
of a scene that follows the rule. New additions on each line are marked in blue.

1. Observe. With uniform probability, either:

(a) Sample a cone from the observation, then sample one of
its features — e.g., #1:3 “medium, size” or {#3}: “red,
color”.

(b) Sample two cones uniformly without replacement from
the observation, and samples any shared or pairwise fea-
ture — e.g., {#1,#2}: “size”, or “contact”

2. Functionize. Bind a variable for each sampled cone in
Step 1 and sample a true (in)equality statement relating the
variable(s) and feature:

(a) For a statement involving an unordered feature there is
only one possibility — e.g, {#3}: “= (x1; red;color)”, or
for {#1,#2}: “=(x1;x2;color)”

(b) For a single cone and an ordered feature this could also
be a nonstrict inequality (≥ or ≤). We assume a learner
only samples an inequality if it expands the number of
cones picked out from the scene relative to an equality
— e.g., in Figure 2b, there is also a large cone {#1} so
either≥(x1;medium;size) or =(x1;medium;size) might
be selected.

(c) For two cones and an ordered feature, either strict or
non-strict inequalities could be sampled if the cones dif-
fer on the sampled feature, equivalently either equal-
ity or non-strict inequality could be selected if the
cones do not differ on that dimension — e.g., {#1,#2}
>(x1;x2;size), or {#3,#4} ≥(x1;x2;size).

3. Extend. With probability 1
2 go to Step 4, otherwise sample

uniformly one of the following expansions and repeat. For
statements with two bound variables Step 3 is performed
for x1, then again for x2:

(a) Conjunction. A cone is sampled from the subset
picked out by the statement thus far and one of its
features sampled — e.g., {#1} ∧(= (x1;green;color),

3Numbers prepended with # refer to the labels on the cones in
the example observation in Figure 2b.

≥(x1;medium;size)). Again, inequalities are sam-
pled only if they increase the true set size rel-
ative to equality — e.g., “∧(≤ (x1;3;xposition),
≥ (x1;medium;size))”, which picks out more objects
than “∧(= (x1;3;xposition);≥ (x1;medium;size))”.

(b) Disjunction. An additional feature-value pair is se-
lected uniformly from either unselected values of
the current feature, or from a different feature —
e.g., ∨(= (x1;color; red);= (x1;color;blue)) or ∨(=
(x1;color;blue);≥ (x1;size;2)). This step is skipped if
the statement is already true of all the cones in the scene.

4. Quantify. Given the contained statement, select true quan-
tifier(s):

(a) For statements involving a single bound variable (i.e.,
those inspired by a single cone in Step 1) the possible
quantifiers simply depend on the number of the cones
in the scene for which the statement holds. The quan-
tifier is selected uniformly from the existential ∃() or
numerical “exactly N=(;J)”, “at least N≥(;J)”, or “at
most N≤(;J)” and J is set to match number of cones for
which the statement is true. If it it is true for all cones,
the universal quantifier ∀() may also be selected.

(b) Statements involving two bound variables in lambda cal-
culus have two nested quantifier statements each se-
lected as in (a). The inner statement quantifying x2
is selected first based on truth value of the expression
while taking x1 to refer to the cone observed in ‘1.’. The
truth of the selected inner quantified statement is then
assessed for all cones to select the outer quantifier —
e.g., {#3,#4} “∧(= (x2;green;color);≤ (x1;x2;size))”
might become “∀(λx1 : ∃(λx2 : ∧(= (x2;green;color);≤
(x1;x2;size));X);X)”. The inner quantifier ∃ is selected
because three of the four cones are green {#1, #2, #4},
and the outer statement is selected because all cones are
less than or equal in size to a green cone.

Note that a procedure like the one laid out above is, in prin-
ciple, capable of generating any rule generated by the PCFG
in Table 1, but will only do so when exposed to a positive

