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Abstract

A novel study is presented that explores the effect that learn-
ing internally organized categories has on the ability to subse-
quently discriminate category members. The results demon-
strate the classic categorical perception effect whereby dis-
crimination of stimuli that belong to different categories is
improved following training, while the ability to discriminate
stimuli belonging to the same category is reduced. We fur-
ther report a new within-category perceptual effect whereby
category members that share the same category label but fall
into different sub-clusters within that category are better dis-
criminated than items that share the same category and clus-
ter. The results show that learners are sensitive to multiple
sources structure beyond simply the labels provided during su-
pervised training. A computational model is presented to ac-
count for the results whereby multiple levels of encoding (i.e.,
at the item-, cluster-, and category- level) may simultaneously
contribute to perception. Keywords: category learning; cate-
gorical perception; perceptual learning

Introduction

Categorical perception (CP) refers to the tendency of ob-
servers who have learned a category to show a reduced ability
to discriminate between items belonging to that category (i.e.,
acquired equivalence) while showing improved discrimina-
tion (i.e., acquired distinctiveness) for items that come from
different categories. For example, a listener’s ability perceive
differences between speech sounds appears to be influenced
by the structure of phoneme categories in their native lan-
guage. Physical stimulus differences near the boundary of
two phonemic categories (such as /be/ and /ge/) appear ex-
aggerated while similar differences within the phoneme cat-
egory region appear reduced (Liberman, Harris, Hoffman, &
Griffith, 1957). While there is some debate about the gene-
sis of at least some of these effects (i.e., whether they reflect
innate features of perceptual organization or are the expres-
sion of learned behavior), there is a growing body of evidence
suggesting that learning arbitrary categorical distinctions for
a variety of visual and auditory stimuli can effectively “warp”
our perceptual abilities in the service of these categoriza-
tions (Harnad, 1987; Logan, Lively, & Pisoni, 1991; Gold-
stone, 1994).

One factor influencing why items that belong to the same
category may be seen as more similar to one another while
items from different categories are seen as more distinct may
center on the the fact that, after learning, category members
share a new commonality by virtue of the learned category
label, name, or other association that category non-members
do not. Consistent with this observation is the fact that almost

all studies of learned CP use a supervised training procedure
where stimuli are classified on the basis of trial and error (re-
quiring an overt response) with corrective feedback. The ad-
vantage of this procedure is that it is possible to objectively
measure category learning performance. However, it remains
a somewhat open question if learned CP effects are restricted
to cases where subjects make a differential response to each
category or if other aspects of category organization, such as
the similarity structure or distribution of items within a cate-
gory, may also exert an influence on perception. For example,
computational models of category acquisition such as the ra-
tional model (Anderson, 1991) or SUSTAIN (Love, Medin, &
Gureckis, 2004) suggest that learners are sensitive to sources
of sub-category structure such as “clusters” of highly similar
items even in the absence of explicit reinforcement.

The focus of the present article is to provide direct ev-
idence for the combined contribution of both explicitly re-
inforced (i.e., supervised) and incidental (i.e., unsupervised)
learning on categorical perception. In particular, we examine
how sources of within-category structure (that are irrelevant
for making a successful categorization response) influence
the ability to later discriminate category members. Consis-
tent with previous reports of CP, we find clear evidence that
learners in our task become better at discriminating between
items that belong to different overt categories during and fol-
lowing training. However, the ability to discriminate within-
category differences was influenced by the internal structure
of the category: items which fell in the same “cluster” of
within-category items became harder to discriminate while
items that shared the same overt category label, but belonged
to separate “clusters” became better discriminated. These re-
sults are not anticipated by standard theoretical accounts of
CP as the warping of an internal representation space under
pressure to reduce categorization error (e.g., Harnad, Han-
son, & Lubin, 1995) or through selective attention given to
categorization-relevant information (Kruschke, 1992; Nosof-
sky, 1986). We conclude by presenting simulations with an
extension of the SUSTAIN model that is simultaneously sen-
sitive to multiple levels of category structure (e.g., at the item-
, cluster-, and category- level) which successfully explains the
pattern of results.

An Experiment

In our study, subjects were asked to discriminate items that
varied along two poorly defined and arbitrary dimensions.
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Figure 1: Stimuli varied along two arbitrary dimensions (A
and B) defined by morphs sequences that interpolated be-
tween the faces shown. A 10x10 grid of faces that blended
these dimensions was created, but the light gray stimuli were
withheld from the category learning phase of the experiment
inducing a source of within-category structure (i.e., each cat-
egory was naturally defined by two distinct prototypes). The
vertical line shows an example category boundary subjects
were taught during the learning phase (for half the subjects
this line was horizontal through the space).

Later, they learned to categorize these stimuli into two groups
via trial and error with corrective feedback. Successful cat-
egorization required attention to only one of the stimulus di-
mensions. However, the structure internal to each of the two
categories was not uniform: within each category there were
two sub-clusters or sub-prototypes of items. Our hypothesis
was that if the principal cause of CP effects is the addition of
a shared category label or response, then we would find in-
creased discrimination accuracy for items that varied along
the category-relevant boundary, with reduced accuracy for
items that belonged to the same overt category. In effect, the
pressure to categorize items into groups would cause learn-
ers to generalize over the structure internal to the categories
that was irrelevant for classification. Alternatively, if learners
are sensitive to both the demands of the categorization task
and the distribution of exemplars within each category (as are
models such as SUSTAIN and the rational model), we might
find changes to the discriminability of items within each cat-
egory consistent with the induced clustering of items (despite
the fact that this clustering was irrelevant for success in the
categorization task).

Methods

Participants and Apparatus 120 students at Indiana Uni-
versity participated in partial fulfillment of a class require-
ment. Subjects were randomly assigned to one of two condi-
tions based on which dimension (A or B in Figure 1) was the

categorization boundary. The experiment was administered
on standard Macintosh computers over a single one-hour ses-
sion.

Stimuli  Stimuli were constructed that varied along two ar-
bitrary and equally salient dimensions. Each dimension was
created by taking two bald male faces as endpoints and creat-
ing a morph sequence which interpolated between. Figure 1
shows the four faces used in our study. One dimension (A)
was created by morphing between the faces along the top of
the figure, while a second dimension (B) was created by mor-
phing between the two faces along the left edge. The actual
faces used to construct the dimensions were selected accord-
ing to preliminary work which allowed us to select dimen-
sions that were roughly equally salient and roughly orthogo-
nal when subjected to a MDS analysis. Using a blending tech-
nique described in Steyvers (1999), a 10x10 matrix of faces
was created such that each face was defined by half its value
on dimension A and half on Dimension B. Previous studies
have show that subjects originally may have little sense of
the dimensional structure of these faces, but with practice can
isolate the relevant aspects needed to categorize along either
dimension (Goldstone & Steyvers, 2001).

For some subjects dimension A was the category boundary,
while for other’s dimensions B was used. A “clustering” was
induced within each category by removing a subset of the full
100 items during training. Figure 1 shows the basic structure
of the categories. The light grey items in this figure were
never presented to subjects during the category learning. As
aresult, the distribution of examples from each category were
distorted such that there were two distinct sub-prototypes or
clusters of items. However, this structure was incidental to
performance in the main categorization task which required
attention along the orthogonal dimension.

Procedure

The experiment was divided into two phases: a baseline dis-
crimination phase and a mixed category learning and discrim-
ination phase.

Phase 1: Baseline Discrimination The pre-category learn-
ing discrimination phase assessed each subject’s baseline
ability to discriminate between pairs of faces that varied along
one or both stimulus dimensions. This initial baseline dis-
crimination phase served two functions. First, it allowed us
to assess for each subject, the ability to discriminate stimuli
prior to category training. Second, it allowed us to evaluate
the a-priori discriminability of each dimension and to confirm
that each dimension was roughly equally salient.

The baseline discrimination phase was divided into 3
blocks consisting of 56 trials each. On each discrimination
trial, subjects were asked to study a single face which was
presented in the center of the display for 500 ms. Following
this short study period, the target face disappeared for 500 ms
(during which time the screen was blank) before two faces
appeared side by side on the display. One of these faces ex-



actly matched the studied face, while the other was a foil item.
Subjects were asked to judge which of the two items they had
just studied and indicated their response using the computer
keyboard. The trial terminated after subjects entered their re-
sponse and the next trial began after an inter-trial interval of
1500 ms. No feedback was provided about accuracy on dis-
crimination trials.

Sixteen target items were selected from the four corners of
each of the four “clusters” of items shown in Figure 1 (e.g.,
Al, D1, A4 and D4 for the cluster in the top left). Foils were
stimuli that were two increments away along either one or
both dimensions. For example, foil items for stimulus A1l
were A4, D1, or D4. Likewise, foils for stimulus D10 were
selected from the set D7, G7, G10, A10, or A7. Note that
which item was considered the (studied) target and which was
the foil was randomly determined any given trial. Each of the
3 baseline blocks tested all target-foil combinations once.

For the purposes of analysis, discrimination trials were
classified according to their relation to the category struc-
ture used in the following learning phase. Discriminations
were considered within-cluster when both the target and the
foil item belonged to the same category and the same clus-
ter (such as Al vs. D1 or G7 vs. J10 in Figure 1). Trials
where the target and foil shared the same category, but were
from different clusters (such as A4 vs. A7 or G4 vs. J7)
were classified as within-category, between-cluster discrim-
inations. Finally, if the target and foil belonged to different
categories (such as D1 vs. GI or D7 vs. G10) they were
classified as between-category-and-cluster.

Phase 2: Mixed Category Learning and Discrimination
In the second phase, subjects completed three mixed blocks
of category learning and discrimination trials. On each trial,
a single face appeared for 500 ms in the center of the display.
Subjects were asked to study the item carefully. However,
they did not know for certain which type of judgement they
would be asked to make about the item (categorization or dis-
crimination). On category learning trials, immediately after
the study phase, the face disappeared for 300 ms and subjects
were asked to indicate if the studied item belonged to cate-
gory ‘A’ or ‘B’ (note that the stimulus was not visible while
they made their judgement). After the response was regis-
tered, subjects were again shown the target stimulus along
with a prompt indicating if their previous judgment was cor-
rect or incorrect along with the correct label for the current
item. On discrimination trials, the trial proceeded in an iden-
tical fashion, although instead of being asked to judge the cat-
egory of the previously studied item, subject made the same
target/foil discrimination used in the phase 1. No feedback
was provided during discrimination trials. There were a total
of 64 categorization judgements and the same 56 discrimina-
tion trials in each block (a total of 120). Trials were mixed so
that in each set of 15 consecutive trials, 8 were categorization
trials, and 7 were discrimination trials.

The benefit of this mixed procedure is two-fold. First, by
mixing category learning and discrimination trials throughout
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Figure 2: A: Pre-category learning discrimination perfor-
mance for the three key types of discriminations. Prior
to learning, subjects have roughly equivalent discrimination
ability for each type of comparison (but are well below ceil-
ing). B: The overall change in discrimination performance
relative to baseline while learning the category. Subjects
show increased discrimination between categories and be-
tween the clusters inside categories, but reduced discrimina-
tion of within cluster discriminations. All error bars are stan-
dard errors.

the learning phase, we gain additional insight into the evo-
lution of perceptual learning abilities in relation to category
knowledge. Second, trials in this phase of the experiment
were constructed so that at the time of encoding the target,
subjects did not know if they would next be asked to catego-
rize or identify the face. As a result, we are able to detect
a stronger influence of category knowledge on perception in
a relatively short training session. While previous work has
established that the impact of category knowledge on percep-
tion abilities can be lasting, our technique can detect strong
effects in a shorter training period and may be of general use
for perceptual learning researchers.

Results

Baseline Discrimination Ability As shown in Figure 2A,
subjects demonstrated relatively robust (but below ceil-
ing) discrimination ability for within-cluster discriminations
(M=.71, SD=.09), between-cluster, within-category discrim-
inations (M=.70, SD=.10), and between-cluster, between-
category discriminations (M=.69, SD=.11). However, prior
to category training, discrimination accuracy for all three
of the types of comparisons were not significantly different
(F(2,238)=.308, Mse=0.002, p=.74). We also considered if
there were a-priori differences in discrimination along dimen-
sion A or B (irrespective of category structure). Overall, sub-
jects ability to discriminate differences between stimuli that
varied along dimension A only slightly exceeded that of di-
mensions B (M=.67, SD=.11 vs. M=.63, SD=.11,1(119)=2.9,
p <.005), suggesting a reasonable balance in the baseline dis-
criminability of the two dimensions. Note that in all subse-
quent analyses we considered the effect of category learning
on discriminations with respect to this baseline ability which
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Figure 3: Category learning performance as a function of tri-
als in the task considered in block of 10 trials as a time. Sub-
jects asymptote around 80% correct.

takes into account this difference on a subject-by-subject ba-

%%tegory Learning Performance Figure 3 shows partic-
ipant’s accuracy on category learning trials over the three
training blocks of Phase 2 considered in sets of 10 trials as
a time. Overall the categorization task was somewhat diffi-
cult. For example, during the last block of trials, subjects
were still only about 80% accurate at category judgements.
However, this is likely due to the fact that at the time of study
for each trial, subjects were uncertain if they would be tested
in categorization or discrimination and the stimulus was not
present on the screen when they made their judgement (re-
quiring memory for the presented item). Nevertheless, sub-
ject shows substantial category learning, particularly early in

ﬁlﬁséﬁlliiination Performance during Category Learning
Of particular interest is the performance on discrimination
trials during the three category learning blocks (phase 2).
For each subject, baseline discrimination ability for within-
cluster, between-cluster-within-category, and between cate-
gory and cluster from phase 1 was computed. Then, dis-
crimination ability during the category learning phase was
computed for the same classes of stimuli comparisons. Fig-
ure 2B shows the change in discrimination ability during
the category learning blocks compared to baseline. There
was a strong effect of discrimination type (F(2,238) = 8.24,
Mse=.07, p <.0004). Post-hoc tests revealed a near sig-
nificant (Bonferroni corrected ow = .016) difference between
within-cluster vs. between-cluster, within category judge-
ments (¢(119) = 2.18, p <.031), and between between-
cluster, within category vs. between category and cluster
judgements (7(119) = 1.99, p < .05) with a reliable differ-
ence between within-cluster and between category and clus-
fer judgements (¢(119) = 3.9, p < .001).

Considering only those subjects who reached 80% or bet-
ter at classification in the final block, N=81) we found a more
robust effect. In this group, both between-cluster, within
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Figure 4: The evolution of the CP effects as a function of
categorization accuracy. All error bars are standard errors.

category and between category and cluster judgements sig-
nificantly improved (¢(80)=2.66, p <.01 and (#(80)=4.55,
p <.001, respectively) while within-cluster judgement did
not (7(80) < 1). In addition, there was a significant differ-
ence (at the adjusted o0 = .016 level) between within-cluster
vs. between-cluster, within category judgements (t(61) =
2.5, p =.014), no difference between-cluster, within category
as compared to between category and cluster judgements
(z(61) < 1) and a strong difference between within-cluster
and between category and cluster judgements (¢+(61) = 3.05,
p =.003).

Our ability to examine the effect category learning on dis-
crimination was limited by the fact that learning appeared
early in the task. For example, a 2x2 repeated measures de-
sign with comparison type (within-cluster, between-cluster,
within category, and between category and cluster) and learn-
ing block (1-3) revealed a main effect of comparison type
(F(2,714) = 13.806, Mse = .21, p < .001) but no effect of
block (F(2,952) = 1.51, p=.21) or interaction (F (4,952) =
.29, p = .88). As a result, we sought to assess more directly
the impact that learned category knowledge had on partici-
pant’s discrimination abilities. First, we divided the category
learning blocks into non-overlapping segments of 15 trials
each. Within each segment, we then analyzed both the dis-
crimination performance (as a function of contrast type) and
overall categorization performance. Figure 5 shows the re-
sults of this analysis. For each subject we considered sub-
blocks where category learning performance ranged from 25-
50%, from 50-75%, and from 75-100% (there were very few
observations where categorization accuracy fell below 25%).
Within these three levels of categorization accuracy, we found
that discrimination trials show a progressive improvement
from near baseline levels to gradually increasing performance
for discriminations that crossed either the category or clus-
ter boundary. A repeated measures ANOVA with both ac-
curacy range (3 levels) and discrimination type (3 levels) as
within subject variables found a significant effect of category
learning accuracy (F(2,874) = 4.75, Mse=.12, p <.009), a



significant effect of discrimination type (F(2,874) = 4.38,
Mse=.11, p <.013), but the interaction failed to reach sig-
nificance (F(4,874) = 1.46, Mse=.04, p =.21). Note how-
ever that when categorization performance was high (i.e.,
>75% correct), subjects show better discrimination accu-
racy (at the adjusted a = .016) for between-cluster, within-
category judgements compared to within cluster judgements
(#(119) = 2.89, p < .005), and between berween category
and cluster compared to within category (t(119) = 3.83,
p < .001), but not between between-cluster, within-category
judgements and between category and cluster judgements
(#(119) = 1.16,p = .25).

Modeling Analyses

In order to account for this pattern of results, we evaluated a
number of computational models of category learning.

Backpropogation Networks

One theoretical account of learned categorial perception ef-
fects was provided by Harnad, Hanson, and Lubin (1991)
whereby simple three layer backpropogation networks were
first trained to auto-associate input patterns with an identi-
cal output. Following this initial phase, the networks were
then taught to simultaneously auto-associate input patterns
with identical output patterns along with the additional tar-
get of predicting a category label for each item. Mea-
suring the similarity in the pattern of hidden unit activa-
tions before and after category training show that these net-
works exhibit a between-category expansion (increased dif-
ferences) and within-category compression (decreased dif-
ferences) (Harnad, Hanson, & Lubin, 1995; Goldstone,
Steyvers, & Larimer, 1996). In effect, the encoding that de-
velops in the internal layer of the network reorganizes in re-
sponse to the demands of categorization, changing the simi-
larity relationships between hidden unit states in the model.

In our first set of simulations, we sought to test if this sim-
ple account of CP could explain our results. Following Har-
nad, et al. we trained simple three layer BP! networks to
auto-associate stimuli that varied along two continuous val-
ued dimensions (with input values ranging from 0.1 to 1.0)
with identical output patterns. Once the networks reached
0.01 of their target values, we then trained the networks to
simultaneously auto-associate and categorize a subset of the
input patterns (withholding those shown in grey in Figure 1)
and compared changes in hidden unit space activation pat-
terns before and after category training. Figure 5 shows the
results of this analysis in terms of the same contrasts use in
the analysis of our experiment. After training, the BP net-
work predicts strong between category expansion (improved
category discrimination along the boundary) but no differen-
tial effect on the between-cluster comparison.

IWe tested a variety of network sizes and found similar results
with each. The results reported here are for networks with 8 hidden
units, learning rate = 0.1, momentum = 0.1.
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Figure 5: Change in predicted baseline discrimination com-
pared to that following category learning for the three models
tested.

ALCOVE

A similar problem faces models which assume a warping of
the stimulus space via selective attention. For example, mod-
els such as ALCOVE (Kruschke, 1992) or the GCM (Nosof-
sky, 1986) assume that as attention is increased along a par-
ticular stimulus dimensions, differences along that dimension
are accentuated. Critically, attention in these models is dif-
ferentially allocated to dimensions which are predictive for
category learning. Figure 5 shows the results of a simula-
tion applying ALCOVE to our task. The exemplar memory
in the model was initialized to hold all 100 stimulus items,
and the attention weights on both dimensions were initial-
ized to 0.5. Prior to category learning, we measured the
pattern of activation in the hidden layer of the network in
response to each item as in the Harnad, et al. simulations
(see also Goldstone, Steyvers, & Larimer, 1996 for a sim-
ilar approach). Then, we trained the ALCOVE network to
predict the category membership of the training items shown
in Figure 1 (for the same number of trials as human sub-
jects). During the category learning phase the network ad-
justed its attention weights, particularly along the category-
relevant dimension. Following this training, we recomputed
the pattern of exemplar node activations in response to each
item. As predicted, the model shows heightened discrimina-
tion for items that cross the category boundary. Interestingly,
the model predict decreased discrimination along the within-
category-between-cluster boundaries due to the fact that at-
tention shifts away from this dimension (as it is irrelevant for
categorization). Finally, we found slightly increased discrimi-
nation for within-cluster discriminations due to the fact that at
least some of these discriminations also spanned the category-
relevant boundary. Intuitively, increased attention to category
relevant information is insufficient to account for the changes
in discrimination performance observed in human subjects.

SUSTAIN

In our final simulation we applied a variant of the SUSTAIN
model of category learning (Love et al., 2004). Unlike strictly
exemplar or prototype models, SUSTAIN assumes that cat-



egories are represented in terms of a set of clusters which
capture regularities both within and between categories. For
example, when learning rule-plus-exception categories, SUS-
TAIN creates one cluster in memory to capture rule-following
items and a separate cluster to capture the exception. The
cluster recruitment process in the model is driven by both the
goals of the learner as well as the similarity structure of ex-
perienced items. As a result, the model is able to predict how
the internal structure of a category can influence the types of
memory representations that are acquired.

As in the simulations described above, input to the model
was encoded on two continuous valued dimensions. Since
SUSTAIN was not directly designed to model perceptual dis-
crimination tasks we simply assumed that the discriminability
of items depended on two factors: the psychological distance
or similarity between the items and the overlap in acquired
category representations. Thus, to model discrimination of
stimulus A and B, we computed the the degree to which a
cluster centered at stimulus A would be activated by stimulus
B (since these values are symmetric it makes no difference
which is the target or which is the foil). This value indexed
the similarity of the items independent of the acquired cate-
gory knowledge (but takes into account changes in similarity
due to attention). We then assumed that two sources of cat-
egory information contribute to discrimination performance.
First, we calculated the pattern of activations across the clus-
ters that SUSTAIN recruited during category learning. In ad-
dition we computed the pattern of activation on the category
output nodes (i.e. the node used to generate a category re-
sponse). The sum of the perceptual similarity measure and the
euclidean distance between the combined vector representing
the cluster and category unit activation indexed the final pre-
dicted perceptual discrimination. Consistent with the struc-
ture of the task SUSTAIN created four clusters on average.
Figure 5 shows the changes in the model’s discrimination fol-
lowing category learning. Unlike the previous simulations,
SUSTAIN clearly captures the basic pattern with lower sen-
sitivity for items that share the same cluster following learn-
ing relative to items that cross either the category or cluster
boundary. However, in these simulation SUSTAIN shows en-
hanced discrimination relative to baseline for items that fall
in the same cluster (due to in part the definition of baseline as
being based on perceptual information alone).

Discussion

Learners in our task appear to have picked up on sources of
structure within each category that were irrelevant to the pri-
mary categorization task. These results show that the effect
of learned CP can extend beyond simply the labels provided
during category learning. The flexible ability to learn about
category structures other than those that are overtly reinforced
allows for adaptive behavior in a dynamic environment where
what is good or bad at one moment can quickly change (e.g.,
substance A and B are poison, C and D are good, later A and
C are good, B and D are poison). In that sense, our results

share some similarity to findings such as pre-differentiation
whereby simply giving animals exposure to stimuli prior to
learning an associative distinction can facilitates the later
task (Hall, 1991). However, to our knowledge, the empiri-
cal results presented here are the first demonstration of direct
unsupervised influences on perceptual discrimination. In ad-
dition, our results present an interesting challenge for models
of category learning. In general, the results appear consistent
models such as SUSTAIN which are sensitive to patterns of
within-category structure. While previous simulations with
SUSTAIN have validated the cluster-based approach to cat-
egory representation based on overall fits to empirical data,
here we find direct evidence for subject learning clusters of
items within overt categories.
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