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This study explores developmental changes in the ability to ask informative questions, hypothesiz-
ing a link between the ability to update beliefs in light of evidence and the ability to ask
informative questions. Five- to ten-year-old children played an iPad game asking them to identify
a hidden insect. Learners could either ask about individual insects, or make a series of feature
queries (e.g., ‘‘Does the hidden insect have antenna?”) that could more efficiently narrow the
hypothesis space. Critically, the task display either helped children integrate evidence with the
hypothesis space or required them to perform this operation themselves. Our prediction was that
assisting children with belief updating would help them formulate more informative queries. This
assistance improved some aspects of children’s active inquiry behavior; however, despite making
some updating mistakes, children required to update their own beliefs asked questions that were
more context-sensitive and thus informative. The results show how making a task more difficult
can improve some aspects of children’s active inquiry skills, thus illustrating a type of ‘‘desirable
difficulty” for reasoning.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

A skill of central importance during development is learning
how to ask informative questions in order to make sense of the
world. The roots of these abilities are observable even in the early
preschool years. For example, in simple causal reasoning tasks,
preschool-aged children can distinguish confounded from uncon-
founded evidence to draw causal inferences (Gopnik, Sobel,
Schulz, & Glymour, 2001; Kushnir & Gopnik, 2005, 2007; Schulz
& Gopnik, 2004). Preschool-aged children also selectively explore
confounded evidence in their own exploratory play (Cook,
Goodman, & Schulz, 2011; Gweon & Schulz, 2008; Schulz &
Bonawitz, 2007). Despite these early emerging abilities, many of
the cognitive skills required for self-guided, active inquiry seem
to follow protracted developmental trajectories. For example, in
tasks designed to assess scientific reasoning abilities, children in
the older elementary school years (ages 8–10) often have difficulty
adopting systematic strategies, such as testing the effects of one
variable at a time or selecting interventions that will lead to deter-
minate evidence (Chen & Klahr, 1999). Although children in the
older elementary school years can be taught to engage in these
strategies via direct instruction (Klahr & Nigam, 2004; Kuhn &
Dean, 2005), it is notable how difficult it is for them to discover
and implement them on their own.

One reason for the difficulties children exhibit in these types of
inquiry tasks may be that active inquiry depends on the coordina-
tion of a variety of component cognitive processes (Bonawitz &
Griffiths, 2010; Coenen & Gureckis, 2015). For example, according
to one popular view (Klein, Moon, & Hoffman, 2006a, 2006b;
Russell, Stefik, Pirolli, & Card, 1993), active inquiry unfolds as a
sequence of mental steps (see Fig. 1). Learners must generate pos-
sible hypotheses to explain their environment. They then must
engage in decision making to ask questions or gather additional
information to decide which of these hypotheses is most likely.
They then must understand the results of these inquiry behaviors
and update their beliefs accordingly, and so on. The various stages
of this loop closely mirror the process of scientific reasoning
engaged by scientists (Klein et al., 2006a, Klein, Moon, &
Hoffman, 2006b; Russell et al., 1993). Inefficiencies in any or all
of these interrelated processes may serve as developmental limita-
tions. For example, young learners may be able to search efficiently
for information given a particular set of hypotheses but have trou-
ble updating their beliefs correctly given new evidence. In this
sense active inquiry behavior is like a bicycle: when all the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2017.05.021&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2017.05.021
mailto:g.kachergis@donders.ru.nl
mailto:marjorie.rhodes@nyu.edu
mailto:marjorie.rhodes@nyu.edu
mailto:todd.gureckis@nyu.edu
http://dx.doi.org/10.1016/j.cognition.2017.05.021
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT


Fig. 1. The active sensemaking loop depicts the successive cognitive process that
are engaged when attempting to derive a meaningful understanding of an initially
ambiguous situation. The stages of the loop closely mirror the process of scientific
reasoning engaged by scientists. However, a similar set of inductive processes are at
play in many real-world situations (e.g., working an unfamiliar ATM machine,
reading a complex nutrition label). Aspects of the loop are directly related to
Bayesian models of learning and information gathering (Bonawitz & Griffiths, 2010;
Gureckis & Markant, 2009).
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elements are properly functioning and aligned the bike moves for-
ward. However, misalignment of even one component can be
catastrophic.

Understanding the integrated nature of these cognitive pro-
cesses is important not just for our scientific understanding of
the development of the human mind, but also because of broader
educational implications. For example, many educational philoso-
phies emphasize relatively unstructured, self-guided learning envi-
ronments (Bruner, 1961; Kolb, 1984; Steffe & Gale, 1995).
Understanding limitations in children’s active inquiry abilities
and how each component of such abilities evolves across age can
be used to design more effective learning environments for chil-
dren of various ages. For example, evidence that younger children
benefit from assistance in updating their beliefs in response to new
evidence would suggest that learning environments for younger
children need to provide support for this component of their
learning.

The present study attempts to decompose the component pro-
cesses involved in active inquiry, specifically focusing on the role of
belief updating. We tasked five- to ten-year old children to identify
a hidden insect in a simple iPad variant of the classic ‘‘GuessWho?”
game. Children sequentially asked questions to try to identify the
hidden target and received truthful answers. Based on prior work
reviewed below (e.g., Mosher & Hornsby, 1966), we expected
younger children to have difficulty formulating informative
queries and thus sought to explore what types of automated assis-
tance might aid children’s reasoning strategies. Specifically, we
manipulated whether the computer program helped children to
use the new evidence that resulted from their queries to narrow
down the hypothesis space, or whether they had to reconcile the
revealed evidence and the hypothesis space on their own. Our
expectation was that helping children to update their beliefs accu-
rately following the receipt of new information would free up cog-
nitive resources and lead to higher quality question-asking.
Interestingly, our results opposed this initial hypothesis in that ele-
ments which ostensibly made our task more difficult actually
improved the quality of children’s inquiry behavior and suggest
an important refinement of the information processing model
summarized in Fig. 1.
1.1. Developmental change in the ability to ask revealing questions

Active inquiry fundamentally depends on the ability of learners
to construct actions or queries which gain information (e.g., asking
a question of a knowledgeable adult). A now classic way to study
this behavior is through experimental tasks based on the 20-
questions or ‘Guess Who?” game. In the game, the asker (partici-
pant) tries to determine a hidden object known only to the
answerer (experimenter) by asking a series of yes-or-no questions.
Mosher and Hornsby (1966) identified two broad question types
commonly used in the game: hypothesis-scanning questions test a
single hypothesis or specific instance (e.g., ‘‘Is it a monkey?”),
whereas constraint-seeking questions attempt to constrain the
hypothesis space faster by querying features that are present or
absent in multiple objects (e.g., ‘‘Is it soft?”), but that do not
directly identify the answer except by virtue of elimination.

A classic finding in this literature is that younger children (e.g.,
aged 6) tend to ask more hypothesis-scanning questions, while
older children (e.g., aged 11) use more constraint-seeking ques-
tions, and also tend to find the answer after fewer questions
(Mosher & Hornsby, 1966). One explanation is that only older chil-
dren have developed the ability to focus on the high-level features
that group the hypotheses, whereas younger children focus on
individual stimuli. Consistent with this viewpoint, manipulations
that help children focus on these higher-level features, such as
cuing them with basic level category labels instead of exemplar
names (Ruggeri & Feufel, 2015), increase the likelihood that young
children will generate constraint-seeking questions (see also
Herwig, 1982). Further, although young children are often rela-
tively less likely than older children to ask constraint-seeking
questions, even younger children (ages 7–9) are more likely to do
so when such questions are particularly informative, such as when
the hypothesis space is large and there are several equally probable
solutions remaining (Ruggeri & Lombrozo, 2014, 2015). These
results reinforce the viewpoint described above: having the right
set of hypotheses in mind, or being primed with the right level
of category information seems to drive more efficient information
search.

The behavioral distinction between constraint-seeking and
hypothesis-scanning questions can also be studied from the per-
spective of normative models (Oaksford & Chater, 1994; Nelson,
2005; Tsividis, Gershman, Tenenbaum, & Schulz, 2013). These
models attempt to objectively define the ‘‘quality” of a question
and to see how people’s choices compare (see below for a larger
discussion). A number of recent studies have explored how chil-
dren’s question asking compared to such models. For example,
Nelson, Divjak, Gudmundsdottir, Martignon, and Meder (2014)
found that 8–10 year-old children can search a familiar structured
domain (people with varying gender, hair color, etc.) fairly effi-
ciently, tending to ask about frequent real-world features that
roughly bisected the search space (e.g., gender first). Likewise,
Ruggeri, Lombrozo, Griffiths, and Xu (2015) found that children’s
patterns of search decisions were well-explained in terms of
expected information gain (EIG), one popular model from this class
which is described below. Perhaps most importantly, these models
are highly context sensitive. Rather than arguing that either
constraint-seeking or hypothesis-scanning questions are univer-
sally ‘‘better,” these models take into account the current context
including the learner’s prior belief and the past evidence that has
been revealed. This allows much more fine grained predictions.
For example, on a given trial a hypothesis-scanning question might
be equally informative compared to a constraint-seeking question
(e.g., when only two hypotheses remain). In our study we will ana-
lyze children’s question asking with respect to these models to
allow an objective measurement of the quality of their information
seeking behavior.
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1.2. Belief updating and active inquiry

While it is clear that there are developmental changes in how
children formulate questions, less work has considered develop-
mental changes in how children make use of the new evidence that
their questions reveal (but see Denison, Reed, & Xu, 2013). How-
ever, there are many reasons to think that these two behaviors
might be deeply entwined. The active inquiry loop in Fig. 1 sug-
gests one obvious interaction because if questions or information
gathering actions are made on the basis of current beliefs, and
those beliefs are wrong, then a query may not have the expected
effects (c.f., research on the hot stove effect, Denrell & March,
2001; Rich & Gureckis, 2015). There are certainly many examples
where scientific progress has been derailed by incorrect interpreta-
tion of evidence, as in the case of experiments thought to support
the theory of spontaneous generation of life (Needham, 1745).

Coenen and Gureckis (2015) describe a more fundamental rea-
son for why belief updating and information search might be
related. In particular, they focus on a popular computational model
of active inquiry called Expected Information Gain (EIG). As men-
tioned above, this model has been widely used in both the adult
and developmental literature to understand how people decide
between different queries (Oaksford & Chater, 1994; Coenen,
Rehder, & Gureckis, 2014; Gureckis & Markant, 2009; Nelson,
2005; Nelson et al., 2014; Markant & Gureckis, 2012; Ruggeri
et al., 2015; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003).
Intuitively, EIG evaluates the quality of a question by considering
how much is expected to be learned from each possible answer
to that question. For example, in the constrained 20-questions
game ‘‘Guess Who?”, a child might ask ‘‘Does your character have
a hat?” or ‘‘Is your character male?”. To decide between these two
queries EIG considers each possible answer (‘‘yes” or ‘‘no” for each)
and how much each answer would alter the learner’s current
beliefs given the question. If all the remaining characters in the
game were wearing hats then the answerer would never respond
‘‘no” to the hat question, and the received ‘‘yes” would not norma-
tively alter the learner’s beliefs; no information would be gained by
asking about hats. Even if one of the dozen remaining characters
had a hat, asking about hats would have low EIG, since it would
be unsurprising that the answer is ‘‘no”–only in one of twelve pos-
sible worlds does the hidden character happen to be wearing a hat,
while in 11 of 12 worlds the character is not. In contrast, if half the
remaining characters were male and half were female, then either
answer to the gender question would strongly shift what the lear-
ner knows, eliminating half of the candidates (either the males, or
the females). Thus, the more valuable question according to EIG
would be ‘‘Is your character male?”. In this model, belief updating
is fundamental to judging the information quality of a possible
query: it is only by imagining how one’s beliefs would change
given different answers that a question derives meaning and value.
On the basis of this observation, Coenen and Gureckis (2015)
reported a study aiming to relate individual differences in belief
updating during a causal reasoning task to patterns of information
seeking behaviors. Subjects that showed clear evidence of biased
belief updating (e.g., incorrectly interpreting ambiguous evidence
as unambiguous) also showed biased patterns of information gath-
ering in a causal intervention learning task. This study highlights
the strongly interactive nature of belief-updating and information
seeking behaviors.

Interestingly, past work on the development of question asking
abilities in children has tended not to emphasize belief updating as
a dependent measure, or precluded studying updating beliefs by
the design of the study. For example, Herwig (1982) presented
children with a series of two-alternative forced choice decisions
between hypothesis-scanning or constraint-seeking question but
did not actually give feedback (and therefore could not detect
errors in belief updating). In the 20-questions task of Nelson
et al. (2014), 8- to 10-year-olds were asked to identify which of
18 people was the hidden target, and played the game to comple-
tion several times for different targets. Children eliminated
hypotheses (flipping over cards) based on acquired evidence, but
were given help by the experimenter if needed, which presumably
means they were not allowed to make errors. In Ruggeri and
Lombrozo (2014), the experimenters did not explicitly represent
the hypothesis space for participants in Experiment 1’s causal rea-
soning task (e.g., ‘‘Why was a man late to work yesterday?”), and
when ten explicit reasons for being late were given in Experiment
2, they remained in view. That is to say, the process of hypothesis
updating was not scrutinized in these prior studies.

In the present study, we hypothesize that biases in the way chil-
dren search for information (e.g., by favoring hypothesis scanning
questions over constraint seeking questions) may stem from diffi-
culties in coordinating the belief updating and search process.
There are a variety of specific reasons for this prediction. First,
although the components of the sensemaking model described in
Fig. 1 above are sequential, they likely rely on a common pool of
cognitive and attentional resources, and are thus not completely
independent. At a minimum, learners have constant and limited
capacities for working memory and reasoning during the task,
and may come to avoid strategies that tax these resources if they
run into difficulty during the course of the experiment. In this case
we hypothesize that the cognitive load from planning questions, or
from updating beliefs, may impair performance on either task. Sec-
ond, hypothesis scanning questions might be easier for young chil-
dren in that they produce evidence that applies to a single
hypothesis. If instead children ask constraint-seeking questions,
they must eliminate from the hypothesis space any possibilities
that are ruled out by the new information. This process could be
cognitively taxing, and also prone to errors. Thus, although
constraint-seeking questions are often more informative in theory,
we posit that they might not always be so to young children, par-
ticularly if children have difficulty using the obtained information
to update their representation of the hypothesis space accurately.

To test this hypothesis, in the present study we manipulated
whether children received assistance in integrating evidence with
the hypothesis space or had to undertake this process on their own.
Our expectation was that aiding children in coordinating evidence
and beliefs would enable more sophisticated, and informative,
inquiry behavior. To evaluate this prediction we evaluated the
quality of children’s question asking ability against an objective
standard of informativeness given by the EIG model described in
more detail below. We additionally analyze our data specifically
in terms of constraint-seeking and hypothesis-scanning questions.
Our central prediction was that assistance in belief updating
should increase the relative EIG of children’s questions and the rel-
ative utilization of constraint-seeking questions. Given that older
children (8–10 years) have previously been found to use more
constraint-seeking questions than younger children (5–7 years),
we tested across these two age groups, expecting that younger
children would benefit more from the assistance in hypothesis
updating than would older children.
2. Experiment

The purpose of the experiment is to investigate how children
utilize hypothesis- scanning and constraint-seeking questions
when trying to discover a hidden object. To that end we created
a tablet-based game based on the popular ‘‘Guess Who?” para-
digm. The study was conducted in the context of a children’s
science museum and the materials and design of the study were
selected to integrate with museum content. Our hope was that



Fig. 2. Examples of two insect body types with all 9 of the binary features present.
Each round used one of 16 possible body shapes.

Table 1
The abstract feature structure of the 16 insects (labeled A-P) used in each round. A
value of 1 means the feature was present for this insect while a value of 0 means the
feature was absent. Abstract features F1-F9 were randomly assigned to the binary
(present or absent) visual features for each participant, with a consistent assignment
used from round to round. For example, if feature F9 was color (green versus white),
then all the 16 bugs might be white except items C and I which would be filled in with
a green body. Both the identity of the features and the meaning of the 0s and 1s in the
table were randomly determined for each child. F10 was always assigned to a button
for body shape, which was shared by all exemplars.

1 Download full task code, data, instruction, and analysis scripts: https://
github.com/kachergis/bugguess.
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insights from the study might be used to help museum curators
design more effective educational exhibits that target children of
different ages. For example, if updating the hypothesis space is dif-
ficult for younger children, exhibits for this age group assist them
in updating, and perhaps even attempt to teach them the process.

2.1. Methods

2.1.1. Participants
Participants in this experiment were 134 children between the

ages of 5 and 10 years old who were recruited at the American
Museum of Natural History’s Discovery Room. Of the 134 children
recruited (67 per condition), we analyze the data from 121 children
(21 5-year-olds, 20 6-year-olds, 22 7-year-olds, 20 8-year-olds, 20
9-year-olds, and 18 10-year-olds) who completed 5 or more
rounds of the game, understood the instructions, and were not dis-
tracted (e.g., by other children or their parents). Participants were
assigned in counterbalanced order to either the automatic-update
condition or the manual-update condition (automatic: 32 5–
7 year-olds and 29 8–10 year-olds; manual: 31 5–7 year-olds and
29 8–10 year-olds).

2.1.2. Stimuli
On each round, children were presented with a display contain-

ing sixteen insects. One of the insects was randomly selected to be
the target which children attempted to identify by asking ques-
tions. The sixteen insects within a round shared the same body
shape but were composed of varying perceptual features. In partic-
ular, insects were defined by the presence or absence of 9 features:
green body, orange eyes, antennae, big spots, tiny spots, legs,
leaves, water droplets, and blue ‘‘fur”. Fig. 2 shows an example of
two of the body shapes used, each with all of the binary features
present. Across rounds the body shapes (selected from a pool of
16 unique body shapes) varied randomly but within a round the
body shape was shared between all sixteen items. The insect task
was designed to fit thematically with the content of the AMNH Dis-
covery Room activities which emphasize the often subtle differ-
ences between species of animals (specifically, many interactive
exhibits involve insects).

2.1.3. Design
Across the sixteen exemplar insects (A-P in Table 1) some per-

ceptual features were more frequent than others (e.g., F1 one was
present on eight of the insects while feature F9 was present on only
two insects). The features (F1-F9) in this semi-hierarchy were ran-
domly assigned to the visual features for each child (i.e., F1 might
be mapped to color (1 = green, 0 = white) for one child, while F1 is
mapped to leaf-eating (1 = leaf, 0 = no leaf) for another). This map-
ping remained consistent across rounds, meaning that even if chil-
dren did not immediately discern the distribution of features, they
may have been able to learn it gradually across the rounds. The
design of the abstract structure introduced strong differences in
the informational utility of each feature (F1-F9). For example, given
no other information, it would be quite informative to ask about
feature F1 because it is shared with half of the possible insects.
In contrast, feature F9 is less informative on the first trial of each
round because most of the insects do no have this feature. Note
that feature F10 depicted a particular body shape, and was not rel-
evant to query since body shape was constant across all insects in a
round.

Each of these features was visually represented on a button (see
Fig. 3), available for children to tap with their finger. An additional
feature button (F10) depicting a particular body shape was always
present but not relevant to the insects on display since they always
shared the same body shape. A tap on a feature button is effectively
a ‘‘constraint-seeking” question. Instead of choosing a feature
button, children could at any time query an exemplar by tapping
it to determine if it was the hidden insect or not. This choice is
equivalent to a ‘‘hypothesis-scanning” query. The interactive
dynamics of the display varied across conditions. After making a
feature query in the manual-update condition, children must select
which insects (i.e., hypotheses) are consistent with the feedback. In
contrast, in the automatic-update condition the hypothesis space
automatically updated to be consistent with the feedback received.

2.1.4. Procedure
After being trained by an experimenter on a simpler version of

the task with unrelated stimuli1 (a dog searching dog houses) so
that they understood how to query exemplars and features, and
how to eliminate hypotheses, children played 5 or more rounds of
the iPad game asking them to identify which one of 16 insects was
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Fig. 3. Task overview: in the upper left, a feature button is used, asking if the insect hidden under the rug is green. Given feedback (‘‘Yes!”), participants in the manual update
condition select the insects that are consistent with this new information (upper right), whereas in the automatic condition the consistent insects are selected by the game.
Players in both conditions press the red button to return to the button phase, and again either choose a feature button or query a single insect. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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hidden under a cartoon rug (see Fig. 3). The task alternated between
the query phase and the elimination phase. In the query phase, play-
ers could either query an individual insect by tapping one (equiva-
lent to asking, ‘‘Is this the hidden bug?”), or choose to use a
feature query button (e.g., the green button asks ‘‘Is the hidden
bug green?”) to find out whether the hidden insect had a particular
feature.

If a single exemplar was tapped on (i.e., a hypothesis-scanning
query), and the item was the experimenter-determined hidden
insect, a smiley face appeared and the round was completed. If
the tapped exemplar was not the hidden insect, a red ‘‘X” was
shown on top of the tapped insect and the insect became grayed
out (i.e., eliminated).

After a feature query (i.e., constraint-seeking query), the insect
under the rug gave feedback, saying ‘‘Yes!” (indicating it had the
feature; narrated by the experimenter), or ‘‘No!” (if it did not have
the feature). This was followed by the elimination phase, during
which insects that were inconsistent with the feedback were elim-
inated, and the hypothesis space was thus narrowed. The elimina-
tion phase varied based on condition. In the automatic-update
condition, after the feedback from a feature query, subjects merely
pressed the ‘‘Eliminate” button, all the no longer relevant insects
were eliminated (grayed out), and the game returned to the query
phase. In the manual-update condition, after a subject made a fea-
ture query and saw feedback, they had to select each insect that
was consistent with the feedback for that feature, as shown in
the top right of Fig. 3. Insects were selected (denoted by a green
box) by tapping, and could be deselected by tapping again. Only
when children verified they were done selecting insects did the
experimenter press the ‘‘Eliminate” button, which eliminated any
insects that were not selected.

Before children were allowed to begin, the experimenter
explained a random selection of at least three of the feature but-
tons (more if the child asked), and asked children to point to an
exemplar exhibiting each of the explained features. In the
manual-update condition it was possible for mistakes to be made
during the elimination phase, as the software did not aid in updat-
ing the hypothesis space. Insects that should have been eliminated
but were kept (a ‘miss’) continued to be visible options. Insects that
were consistent with the query but wrongly eliminated (a ‘false
alarm’) were grayed out. Our analyses below take into account
the role that such errors may have played in the manual-update
condition. In the event that the hidden insect was wrongly elimi-
nated during a manual-update error, the round was played out
until all of the insect/hypotheses were grayed out. The experi-
menter would then indicate that the insect must have been mis-
takenly eliminated (but not at what point), and would end the
round by clicking the grayed-out exemplars until the hidden one
was found. These final clicks (beyond when all hypotheses were
eliminated) were not included in the analysis.
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At the beginning of each round, the experimenter would say,
‘‘Let’s try to find which insect is hiding pretty quickly, so we can
do more!” Thus, the task mostly relied on intrinsic motivation to
solve the puzzle quickly, providing no explicit cost incentive to
be efficient. This was chosen primarily due to the difficulty of
rewarding children in the museum. Children were welcome to
complete more than five rounds, if they desired to: after the fifth
and each successive round, they were asked, ‘‘Do you want to play
again?”.
2.2. Results

2.2.1. Overall
We analyzed only the first 10 rounds2 from each child (only 8

children played more than 10 rounds, including one who played
51 rounds). This covers 722 rounds from the 121 children who
understood the instructions and completed a minimum of five
rounds (61 in the automatic condition and 60 in manual). The mean
number of total queries (feature and exemplar) taken to complete a
round was 6.07 in the automatic-update condition, and 5.08 in the
manual-update condition. Based on bootstrapped means, the 95%
confidence intervals (CIs) for these distributions did not overlap
(bias-corrected and accelerated (BCA) 95% CIs for manual condition:
(4.75, 5.44), for automatic condition: (5.77, 6.37)), with the manual
condition taking fewer queries. However, we note that in the manual
condition, before removing the queries following mistakes in which
the correct answer had been eliminated, rounds took an average of
7.36 queries (95% CIs: (6.91, 7.85)) to complete–more than the auto-
matic condition. For comparison, we simulated 700 rounds of the
game with an agent that queried randomly in the task, choosing uni-
formly at random on the first query from 16 exemplars and 10 fea-
ture buttons, and continuing with whatever stimuli (and feature
queries) remain after each query, while making no update errors.
This random agent took on average 8.89 queries (median: 9) to com-
plete a round, with bootstrapped 95% BCA CIs (8.58, 9.20) higher
than the CIs of either condition. This simple baseline model provides
an important baseline for chance in this complex task, since each
feature query can eliminate a variable quantity of exemplars,
depending on the features of the remaining hypotheses. Thus, each
successive (random) click can have a large effect on both the number
of remaining exemplars, and on the relevance of the remaining fea-
ture queries. The fact that the random agent takes significantly more
queries than participants in either condition suggests at least some
structure in children’s active inquiry behavior, further investigated
below.

In the remaining analyses, following Mosher and Hornsby’s
(1966) finding of a transition from hypothesis-scanning to
constraint-seeking questions from 7- to 8-year-olds, we group
the younger (5–7 year-olds) and older (8–10 year-olds) children.
The same analyses have been performed using age as a continuous
variable and the same significant effects were found in all cases.
2.2.2. Qualitative querying behavior
Participants’ mean number of queries per round were subjected

to an ANOVA with update condition (automatic vs. manual) and
age group (5–7 vs. 8–10) as between-subjects factors and query
type as a within-subject factor.3 This analysis indicated a significant
main effect of age group (F(1,223) = 7.82, p < :01), and no significant
2 This threshold was chosen after seeing the distribution of rounds played to limit
undue influence on by-round analysis of the few children who chose to play more
than 10 rounds (whose behavior may be expected to change in later rounds, and who
may be different than the majority of children who played < 10 rounds), without
throwing out too much of the data (92% remains).

3 Behavior across rounds was investigated for evidence of learning, but no
consistent changes in behavior were evident.
main effect of condition (F(1,223) = 0.29, p ¼ :59) or query type
(F(1,229) = 0.93, p ¼ :33). Overall, older children required fewer
queries of either type to complete a round, also evidenced by a
significant negative correlation between participants’ mean
queries to complete a round and age (in years: 5–10;
tð119Þ ¼ 2:39; p ¼ :02; r ¼ �:21). There were significant interactions
of condition and query type (F(1,223) = 12.72, p < :001), and age
group and query type (F(1,223) = 9.75, p < :001), detailed below.
No other interactions were significant (all F-values < 1). In
comparison to the manual condition, there were fewer exemplar
queries in the automatic condition (Mman ¼ 4:16, Mauto ¼ 2:99;
tð100:5Þ ¼ 2:97; p < :01), while there were fewer feature queries in
the manual condition (Mauto ¼ 3:88) (Mman ¼ 3:01; tð85:8Þ ¼ 2:41;
p < :05). The participants’ feature query rates in both conditions
were lower than the simulated random rounds’ mean number of
feature queries (5.41, bootstrapped 95% CIs = (5.19, 5.64)), but above
the optimal. The participants’ number of exemplar queries in the
manual round were similar to the simulated agents (4.02, boot-
strapped 95% CIs = (3.86, 4.19)), but lower in the automatic
condition.4

Fig. 4a shows the average number of query types used per
round for participants by age group. Both age groups in the
manual-update condition used more exemplar queries than
feature queries, and older participants in both conditions use
fewer exemplar queries than younger participants (M5�7 ¼ 4:28;
M8�10 ¼ 2:64; tð113Þ ¼ 3:64; p < :001). Older participants used a
greater proportion of feature queries than younger participants
in the automatic condition (M5�7 ¼ :49 vs. M8�10 ¼ :66;
tð57:8Þ ¼ 3:31; p < :01), but there was no significant difference in
the manual condition (M5�7 ¼ :44 vs. M8�10 ¼ :53; tð49:3Þ ¼ 1:31;
p ¼ :20). Thus, the automatic condition replicates the Mosher and
Hornsby (1966) finding that older children use a greater proportion
of constraint-seeking questions, but this finding is not reliably
found in the manual condition alone.

The finding of more feature queries in the automatic condition
and more exemplar queries in the manual condition raises a num-
ber of questions about when and why participants are choosing
particular queries in each condition. We next investigate response
times to reveal how much thought participants are putting into
making each type of query.
2.2.3. Response times
Participants’ median5 RT for each button type (feature and exem-

plar) was computed and these data were subjected to an ANOVA
with condition (automatic, manual) and age group (5–7, 8–10) as
between-subjects factors and button type as a within-subject factor.
There were significant main effects of button type (F(1,229) = 26.33,
p < :001) and condition (F(1,229) = 7.36, p < :01), but not a signifi-
cant main effect of age group (F(1,229) = 1.89, p ¼ 0:17). On average,
participants took longer to make queries in the manual condition
(5219 ms) than in the automatic condition (4016 ms). Overall, par-
ticipants took much longer to make feature queries (6841 ms) than
to make an exemplar query (2424 ms), perhaps indicating more
thought before making the more complex queries (i.e., feature
queries, as they may pertain to multiple exemplars). There was also
a significant interaction effect of query type and condition (F(1,229)
= 11.81, p < :001). Fig. 4b shows the mean of subjects’ median RTs
for each query type, split by condition. Feature queries were slower
in the manual-update condition (8347 ms vs. 5435 ms in automatic),
4 Note that although there are at first more exemplars (16) than feature buttons
(10), after the first query or two there will likely be few exemplars remaining to
query, which is why the expected number of exemplar queries is lower than the
expected number of feature queries in the simulation.

5 Response times are right-skewed, so medians are a less biased measure of central
tendency.
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Fig. 4. Mean query usage per round (a) shows that older children use fewer exemplar queries than younger children. Manual-update participants used more exemplar
queries and fewer feature queries than automatic-update participants. Response times (b) show that exemplar queries were faster than feature queries, which represent a
more complex strategy and thus likely required more thought. Feature queries were particularly slower in the manual-update condition.
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which could indicate (1) more careful thought given to features in
this condition, and/or (2) general hesitance to use feature queries,
perhaps because it is time-consuming (even difficult) to manually
update hypotheses. Exemplar queries, on the other hand, were at
least as fast in the manual-update condition as in the automatic-
update condition (2248 ms vs. automatic: 2597 ms). Other interac-
tions were not significant (all F-values < 1).

In summary, it is clear that the manual-update condition results
in fewer feature queries and more reliance on exemplar queries.
Manual-update participants may be reluctant to use feature
queries for at least two reasons: (1) it demands more time and cog-
nitive effort to manually update the hypothesis space after a fea-
ture query than in the automatic-update condition, and (2) the
manual update process is error-prone, and any mistakes may in
turn lead to more exemplar queries in order to recover.6 Therefore
we proceed to investigate errors in manual updating.
2.2.4. Manual update mistakes
The manual-update condition allows participants to commit

two types of error during hypothesis updating: a miss is defined
as a failure to eliminate a insect, and a false alarm is a failure to
keep a hypothesis that was consistent with the query. Note that
a miss is an error of commission–i.e., the insect had to be tapped
to be kept–whereas a false alarm is an error of omission (i.e., failing
to tap a insect), and thus we expect more of the latter. Comparing
the manual-update subjects’ mean number of errors of each type
per round, indeed there were more false alarms (M ¼ 6:9,
sd = 1.9) than misses (M ¼ 1:8, sd = 1.3; paired
tð58Þ ¼ 19:8; p < :001). A MANCOVA to determine if error rates
were related to age did not find a significant effect for either misses
6 If the correct answer is mistakenly eliminated, exemplar queries are needed to
find it and finish the round. These additional exemplar queries (tapping on grayed-out
bugs) were excluded from analysis, and were necessary in 86 out of 364 manual
rounds.
(F(1,56) = 0.77, p > :05) or false alarms (F(1,56) = 0.23, p > :05).
Consistent with our hypothesis that manual updating increases
cognitive load and reduces information seeking behavior, fewer
feature queries and more exemplar queries were made in the
manual condition. However, RT analyses also indicated that fea-
ture queries took longer under manual updating. One possibility
is that feature queries were more carefully considered in this con-
dition than under the ease of automatic updating. To evaluate this
idea, we conducted a model-based analysis of children’s feature
queries which provides a context-sensitive measure of query
informativeness.

2.2.5. Expected information gain
Each successive query reduces the size of the remaining

hypothesis space to some degree: on the first move, querying the
appropriate feature (F1) can cut the space in half. When two
hypotheses remain, even an exemplar query will cut the space in
half. As a result, the distinction between constraint-seeking and
hypothesis scanning queries is not absolute (either could be better
in different circumstances). As described in the Introduction, one
way to analyze the contextual sensitivity of participants’ queries
is to calculate the Expected Information Gain (EIG) of the query
they made.

We first introduce key terms used to define EIG. Entropy mea-
sures uncertainty about the outcome of a random variable X and
is denoted HðXÞ. Entropy is 0 when there is only one possible out-
come, and maximal when all possible outcomes are equiprobable
(i.e., a uniform distribution).

HðXÞ ¼ �
X

x

pðxÞ � log2ðpðxÞÞ ð1Þ

Mutual information gain, IðX; YÞ, measures the change in
entropy as we receive a new piece of information Y, i.e., how much
does our uncertainty about X change given that we know Y?

IðX;YÞ ¼ HðXÞ � HðXjYÞ ð2Þ
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The Expected Information Gain (EIG) of a query Q is the
weighted average of the information possible from each possible
answer to the query, weighted by the current probability of receiv-
ing that answer.

EIGðQÞ ¼ �
X

Y

pðYjQÞIðX;YÞ ð3Þ

This will be 0 (or near-0) for queries that can be expected to
eliminate none or just one or two hypotheses in a large space,
and more positive for queries that are likely to eliminate a larger
number of hypotheses. In this task, EIG is maximal (1) for a feature
query that will eliminate half the remaining hypotheses. Such a
query is always available at the beginning of any round (feature
F1), and due to the partially-nested feature structure used (see
Table 1), maximal EIG queries are often available at other stages
of the round. Note that maximizing EIG would result in the same
choices as maximizing the expected number of deleted hypothe-
ses, taking into account the number eliminated by both possible
outcomes of the query, and the likelihood of each outcome. Due
to the semi-hierarchical distribution of features, there is often a
single feature with near-maximal EIG, while once a feature query
is made, some other feature query will now have near-minimal
EIG.

We analyze the EIG for each participant’s feature queries sepa-
rately, as well as in aggregate with the exemplar queries. 7 Partic-
ipants’ mean feature query EIG was subjected to an ANOVA with
condition and age group (5–7 vs. 8–10) as between-subjects factors.
This ANOVA indicated significant main effects of condition (F(1,115)
= 55.03, p < :001) and age group (F(1,115) = 12.42, p < :001), with no
significant interaction (F(1,115) = 0.20, p ¼ :66).8 The same ANOVA
applied to participants’ mean EIG of all queries indicated a signifi-
cant main effect of condition (F(1,116) = 25.11, p < :001) and a sig-
nificant main effect of age group (F(1,116) = 21.43, p < :001), with
no significant interaction (F(1,116) = 1.02, p ¼ :31). Fig. 5 shows
mean EIG per feature query (a) and for all queries (b) by age group
and condition, along with a baseline showing the mean EIG of all
the remaining feature queries (i.e., as if each subject had chosen ran-
domly from the feature queries available at any given point). Note
that although randomly-chosen features for the manual-update sub-
jects have a slightly higher EIG than for automatic-update subjects
(driven in part by update errors quickly reducing the hypothesis
space), the baseline random EIGs are far below the corresponding
human data. Feature queries made by 8–10 year-olds had signifi-
cantly higher EIG than those made by 5–7 year-olds
(M8�10 ¼ :71; M5�7 ¼ :63; tð117Þ ¼ 3:06; p ¼ :003), showing that
older children tended to use more relevant feature queries. The fea-
ture queries made by participants in the automatic condition had
significantly lower EIG than those made in the manual condition
(Mauto ¼ :59; Mman ¼ :75; tð112:7Þ ¼ 7:15; p < :001). To verify this
finding, we examined in what proportion of feature queries partici-
pants in each condition chose the most informative feature query, in
terms of the actual EIG for the current hypothesis space. Automatic-
update participants queried the most informative feature in 30.3% of
the situations, while manual-update participants chose the most
informative feature in 37.6% of the situations. Thus, although
manual-update participants used fewer feature queries overall, and
7 Exemplar query EIGs alone are less interesting, as they are a simple function of
how many hypotheses remain. Participants’ choice of feature query, on the other
hand, indicates how sensitive they are to the relevance of each feature–and to the
context of their current situation. However, as the space shrinks, it is interesting to
see whether participants’ persist in making (now less informative) feature queries, or
switch to (increasingly informative) exemplar queries.

8 The same significant effects and similar mean EIG values were obtained when
analyzing only the first two feature queries per round, when manual- and automatic-
update participants were on more equal footing (i.e., before further manual errors–
which could raise or lower the EIG of the remaining feature queries).
did make some mistakes during hypothesis updating, they queried
features with higher expected information gain than automatic-
update participants. Along with the reaction time results
described above, this suggests that these children thought more
before making their choices and managed to choose more
informative feature queries. Indeed, there was a weak but signifi-
cant correlation of participants’ mean feature query RT and EIG
(r ¼ :20; tð116Þ ¼ 2:17; p < :05), verifying that longer RTs are
associated with more informative feature queries.
2.2.6. Query-by-query behavior
Fig. 6 shows the mean proportion of feature vs. exemplar

queries by query index within a round for each update condition
split by age group, contrasted with simulated agents choosing
any available buttons uniformly at random throughout the game.
Older children show a much higher proportion of feature queries
in the first three clicks of the automatic condition, and the first
two of the manual condition. In both update conditions, the first
three clicks are more likely to be feature than exemplar queries,
and automatic-update subjects often make a fourth feature query
before likely moving to exemplar queries. Both human conditions
are quite different than the simulated random agent. Rather, the
response profile of human participants looks generally like the
optimal sequence: 3 feature queries and then one (sometimes
two) exemplar queries. However, as was shown earlier, partici-
pants rarely chose the most informative feature to query at any
given time, and manual participants made a number of updating
errors. Where does the higher EIG for manual-update feature
queries come from? Are they choosing the best feature query from
the start, or are they simply better at testing more contextually-
relevant features later in the round?

Fig. 7 shows the mean EIG of feature queries by feature query
index (left), and for all queries (right), with a simulation based
on the participants’ data for comparison: although following the
same sequence of situations as participants, this simulation shows
the EIG if a query (just feature at left, or feature and exemplar at
right) had been chosen at random in each instance. Fig. 7 reveals
that people in the two update conditions had similarly informative
first queries–especially for the 5–7 year-olds, who were not much
better than random, but that manual subjects’ subsequent few fea-
ture queries were more informative than automatic subjects’ or the
random choices. That is to say, manual-update participants chose
feature queries that were more contextually appropriate for the
particular set of remaining hypotheses, in contrast to automatic-
update participants who–despite finding an informative feature
for the first query–paid less attention to the unfolding situation.
In fact, after the initial high-quality query, the younger
automatic-update participants chose queries with nearly the same
EIG as the random simulation, implying that they more or less
ignored the features of the remaining hypotheses. For older
automatic-update participants, feature query EIG was better than
random after the first query, although it remained below
manual-update EIG across feature queries.
3. General discussion

In the present study, we manipulated the support children were
given while updating a hypothesis space during a self-directed
learning task. After making a feature (or constraint-seeking) query,
participants in the automatic update condition were shown which
insects were effectively ruled out at the press of a button, whereas
manual update participants were required to select the insects that
were consistent with the feedback themselves.

In line with previous research (Mosher & Hornsby, 1966;
Ruggeri & Lombrozo, 2014), older children (ages 8–10) asked a
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Fig. 5. Mean expected information gain (EIG) for feature queries by age group and condition, with dotted lines showing the mean EIG of all queries available in the same
situations as subjects (not the earlier random agents)–for comparison. Manual-update subjects had higher EIG than automatic-update subjects, and both were better than
random–but suboptimal (1). Older children had higher EIG than younger children. Bars show ±1SE.

Fig. 6. Proportion of feature vs. exemplar queries by query for each update condition, with a randomly-querying agent for comparison. People in both conditions are more
likely to make feature queries rather than exemplar queries in the first query of a round, at higher rates than random chance, but manual-update participants move more
quickly to exemplar queries, and are overall more likely to make exemplar queries. Older children make a higher proportion of feature queries in the first few queries of both
conditions.

G. Kachergis et al. / Cognition 166 (2017) 407–417 415
higher proportion of constraint-seeking questions than younger
children (ages 5–7), who relied more on hypothesis-scanning
(i.e., exemplar queries), in both conditions. These qualitative anal-
yses also found that children use more constraint-seeking ques-
tions (i.e., feature queries) in the automatic-update condition. On
the surface then, these children were using a more efficient strat-
egy than the manual-update children.

However, in terms of expected information gain, a context-
sensitive measure of how well a chosen feature bisects the remain-
ing hypothesis space, children in the automatic-update condition
made less informative feature queries. We suggest that the greater
mental effort required by manual updating actually led to more
careful consideration of which feature query to use, and ultimately
a better choice. This is a type of desirable difficulty in the sense
that aspects that made the learning task ostensibly more difficult
led to more sophisticated question asking behavior. Indeed,
response times for feature queries were slower under manual
updating, indicating that greater thought went into making those
choices.

Our results provide important nuance to recent findings show-
ing that children’s question asking behavior conforms to the pre-
dictions of normative models such as EIG (Ruggeri & Lombrozo,
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Fig. 7. Subjects’ mean expected information gain (EIG) of feature queries (a) and all queries (b) by query index and condition, with simulated random choices (mean EIG of all
remaining options from the same situations) for comparison (right panels of (a) and dotted lines of (b)). At left, although subjects’ first feature query had nearly the same
mean EIG in both conditions, the next few feature queries in the manual-update condition had higher mean EIG than the automatic condition. This suggests that manual-
update subjects paid more attention to the remaining hypotheses after the first query, and made subsequent feature queries that were sensitive to the current context.
Making four or more feature queries in a given round was quite rare, as most participants mostly switched to exemplar queries after the second or third feature query. EIG for
all queries (right) show a similar pattern (and a stronger advantage over the simulation), meaning that manual participants are better at switching to exemplar queries at the
right time, whereas automatic participants may be persisting in querying (now uninformative) features.
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2015). Although even the youngest children asked more informa-
tive questions than a random guesser, the quality of children’s
questions varied widely and depended on the overall nature of
the learning task and environment. This type of finding follows
from the sensemaking loop in Fig. 1, which argues for a more inter-
active and integrated reasoning process.

Prior work has found that although quite young children show
some of the requisite skills for successful active inquiry, such as the
ability to distinguish confounded from unconfounded evidence to
draw causal inferences (Gopnik et al., 2001; Kushnir & Gopnik,
2005, 2007; Schulz & Gopnik, 2004), the capacity to make use of
these skills to engage in efficient self-directed explorations in com-
plex tasks follows a protracted developmental trajectory (Chen &
Klahr, 1999). The present findings provide a new perspective on
why this might be the case. Although young children have the
capacity to generate informative questions in certain circum-
stances, as shown here and, for example, by Ruggeri and
Lombrozo (2015), children’s abilities to ask informative questions
and to benefit from the information yielded by their questions
depends on the nature of the learning environment. Further, effec-
tive active inquiry involves the coordination of multiple cognitive
processes–the ability to ask and learn from an effective question
depends not only on children’s capacity to recognize the most
informative question given a particular context, but also to prop-
erly integrate the information that the question yields with the
current hypothesis space (and then to realize what question will
be informative to ask next). Children’s actual capacity to engage
in effective active inquiry to navigate a new learning environment
thus depends on more than the ability to generate the right ques-
tion, but also the coordination of this skill with other somewhat
demanding cognitive processes.
We found evidence for a type of ‘‘desirable difficulty” in chil-
dren’s abilities to ask informative questions–children asked more
informative questions when they had to update the hypothesis
space on their own. It is, however, important to put this ‘‘desirable
difficulty” finding into perspective. Although children overall
seemed to ask more sophisticated questions in the manual update
condition, they also made more mistakes. As a result they took
more time to identify the bug and often failed at the task. These
results speak to the complex interplay of component processes in
self-directed learning. The interconnection of information-driven
and motivational components makes it difficult to even identify
what makes a task ‘‘easier” for a young child without first defining
which aspect of behavior one wants to influence. At the very least,
this study provides evidence that hypothesis updating is a difficult,
error-prone step in the active inquiry process (which has often
been under-appreciated in past work). From both theoretical and
practical perspectives, it would be useful in future research to
identify exactly what accounts for the benefits observed in the
manual-update condition (e.g., increased motivation to avoid unin-
formative questions, deeper processing of the obtained evidence
and so on) so that learning environments could be designed that
maintain these benefits while also helping children to avoid some
of the associated costs, such as errors in the updating phase. More-
over, it is worth noting that the hypothesis space in this task was
explicitly represented–both in full, and during updating–unlike
the mental hypothesis space in a verbal game of 20 questions, or
in the realm of science. Although representing the hypothesis
space explicitly made it possible to use a novel domain in which
we could manipulate feature informativeness, and in which we
could observe and support hypothesis updating and observe errors,
this departure from a purely mental hypothesis space could mean
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that children’s errors were due to visual attention, and may not
apply in the same way in mental hypothesis spaces.9 Future work
might examine the behavioral effects of dropping the external repre-
sentation of the hypothesis space after familiarization. However,
using an external representation of the hypothesis space, and manip-
ulating in this study allowed us to unveil an interaction between
belief updating and question asking, two nonadjacent steps of the
sensemaking loop. We hope this study will serve as a reminder that
task design can have effects further downstream than expected in
theory, for learners are sensitive to difficulty across task stages,
and may choose strategies to ease their burden.
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