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Abstract 
We asked 169 participants to spontaneously categorize nine 
sets of items. A category structure was assumed to be more 
intuitive if a large number of participants consistently 
produced the same classification. Our results provide a rich 
empirical framework for examining models of unsupervised 
categorization—and illustrate the corresponding profound 
modeling challenge. We provide a preliminary examination 
comparing two models of unsupervised categorization: 
SUSTAIN (Love, Medin, & Gureckis, 2004) and the 
simplicity model (Pothos & Chater, 2002).  

Keywords: unsupervised categorization; simplicity; 
SUSTAIN. 

Introduction 
In unsupervised categorization there is no pre-determined 
assignment of objects to categories. The participant is free 
to decide which classification makes more sense, typically 
with no or minimal constraints. Research into unsupervised 
categorization consists of several specific themes, for 
example, the circumstances under which unidimensional 
classification might be observed, the effect of stimulus 
format and procedure on classification strategies, and the 
role of general knowledge in category coherence (e.g., 
Milton & Wills, 2004; Yang & Lewandowsky, 2004). The 
focus of the present work is category intuitiveness, i.e. our 
ability to recognize certain groupings of objects as intuitive. 
To pick a trivial example, most people consider the 
grouping of all instances of chairs into one category as very 
intuitive. However, a category consisting of dolphins, babies 
born on Tuesdays, and the Eiffel Tower would be 
considered nonsensical. Ideally, we would be able to 
express these intuitions in mathematical terms.  

Modeling category intuitiveness is an important objective 
for research into unsupervised categorization, but its study 
has been problematic because of the very large number of 
possible classifications for a set of items (for as few as 10 
items there are 100,000 possible classifications). Category 
intuitiveness is closely related to Murphy and Medin’s 
(1985) notion of category coherence. A possible difference 
is that category intuitiveness can be established on the basis 

of purely perceptual considerations, whereas category 
coherence is theory-laden. The relation between the two is 
complex and we will not further address it presently.  

Several sophisticated modeling frameworks have been 
proposed for modeling category intuitiveness and an 
exhaustive comparison would be impractical. We consider 
SUSTAIN (Love, Medin, & Gureckis, 2004) and the 
simplicity model (Pothos & Chater, 2002). There are several 
reasons why this comparison is interesting. First, while 
drawing from radically different formal specifications, both 
models suggest that a simplicity principal may guide 
category intuitiveness.  In SUSTAIN, this is accomplished 
via an incremental coverage principle, whereby new 
knowledge structures are created when items are 
encountered which do not fit well into any existing 
structure. In the simplicity model, a categorization is 
favored to the extent that it provides a ‘simplification’ (in a 
formal, algorithmic sense) of the similarity structure of the 
presented items. Classifications that are highly complex or 
irregular for a set of items, would not allow much 
simplification and are discouraged.  In addition, both 
models incorporate a similarity constraint: categories should 
be more intuitive and easier to learn to the degree that they 
respect the similarity structure of the items to be 
categorized.  

Despite these similarities, there are important differences 
as well: SUSTAIN is parametric, in that it assumes that 
items have certain positions in psychological space. In 
contrast, the input to the simplicity model is the set of 
relative similarities, and so its operation is independent of 
exact information about item representation. Also, 
SUSTAIN’s operation is guided by a number of free 
parameters while the simplicity model has typically no 
parameters; for a given input, it produces a prediction of 
what should be the most intuitive classification. Finally, 
SUSTAIN is a process model of trial-by-trial learning, 
whereas simplicity assumes all items are presented 
concurrently (although note that both models can be adapted 
to carry out their non-native form of categorization). In a 
way, the distinction between these two models reflects the 



difference between theories developed at Marr’s algorithmic 
level (SUSTAIN) and at the computational/normative level 
(the simplicity model). 

The goal of the present article is two-fold. First, we 
present results examining the types of category structures 
human participants prefer, when asked to spontaneously 
categorize sets of stimuli. Second, we examine SUSTAIN 
and simplicity as formal accounts of the empirical results. 

Incremental Coverage vs. Information-
Theoretic Simplicity: Comparing SUSTAIN 

and the Simplicity Model 
 
SUSTAIN 
SUSTAIN is a trial-by-trial clustering model of category 
acquisition, aiming to capture the full continuum between 
supervised and unsupervised categorization. Clusters in the 
model correspond to psychologically meaningful groupings 
of items. For example, when learning about categories of 
birds, a single cluster in the model might represent highly 
similar species such as robins and blue-jays separate from 
highly dissimilar examples such as ostriches. SUSTAIN is 
initially directed towards classifications involving as few 
clusters as possible, and only adds complexity as needed to 
explain the structure of a category. Two key aspects of 
SUSTAIN’s account are the role of similarity and surprise 
in directing category discovery. First, SUSTAIN favors 
clusters organized around perceptually or psychologically 
similar items. Second, new clusters are created in memory 
when the existing ones do a poor job of accommodating a 
new instance. Thus, SUSTAIN adjusts its category 
representations in a trial-by-trial fashion to accommodate 
the similarity structure of the items it has experienced. 

When a to-be-categorized item is first presented to the 
model, it activates each existing cluster in memory, in a way 
based on the similarity of the item to each cluster. In 
addition, learned attention weights in the model can bias this 
activation in favor of dimensions which are more predictive 
for categorization.  Clusters that are more activated are more 
likely to be selected as the “winner” for the item. If there are 
many highly activated clusters for a particular item, then 
confidence in the winning cluster is reduced—i.e., there is 
cluster competition (regulated by a parameter). In the 
unsupervised learning situations considered here, if the 
current input item fails to activate any existing cluster above 
some threshold level, then a new cluster is created for the 
item. This is the key mechanism of ‘surprise’ in SUSTAIN: 
new clusters are created in response to surprisingly novel 
stimuli that do not fit with existing knowledge structures. 
The threshold parameter (τ) controls what level of activation 
is considered ‘surprising’ enough, so that this parameter 
effectively determines the number of clusters the model 
creates (τ is analogous to the coupling parameter in the 
rational model; Anderson, 1991).  

Quantitative fits of SUSTAIN have shown that the 
model’s operation is not too dependent on exact parameter 

values (Love et al., 2004).  As a result, in the simulations 
reported here we recycle a single set of global parameters 
used from previous studies and only manipulate the setting 
of the threshold parameter (τ). Given that SUSTAIN is a 
trial-by-trial learning model, in modeling a free sorting task 
where multiple items are simultaneously presented, 
SUSTAIN’s fits are derived by running the model thousands 
of times on different stimulus orderings in order to create a 
distribution of plausible classifications: more 
psychologically intuitive classifications are considered to be 
the ones more frequently generated. 
 
The Simplicity Model 
The simplicity model is effectively an implementation of 
Rosch and Mervis’s (1975) intuition about categorization, 
within an information-theoretic framework. Rosch and 
Mervis (1975) suggested that basic level categories 
maximize within- and minimize between-category 
similarity. In Pothos and Chater’s (2002) information-
theoretic instantiation of this idea, classifications are 
considered descriptions of the similarity structure of a set of 
items. Where these descriptions afford an economical 
encoding of the similarity structure, they should be 
preferred. This is Occam’s razor (the simplicity principle), 
which has been argued to have psychological relevance 
(Chater, 1999; Feldman, 2000) and is congruent with 
Bayesian approaches in cognitive science (Tenenbaum et 
al., 2006).  

More specifically, the simplicity model first computes the 
information content of all the similarity relations between a 
set of items. This is done by assuming that the similarity for 
each possible pair of items is compared to the similarity of 
every other pair. For example, is a banana and an apple 
more/less similar to a banana and an orange? Each such 
comparison is worth one bit of information (ignoring 
equalities). A classification for the items is defined as 
imposing constraints on the similarity relations: all 
similarities between objects in the same category are 
defined to be greater  than all similarities between objects in 
different categories. Therefore, a classification can be 
evaluated in terms of how many correct constraints it 
provides—erroneous constraints need to be identified and 
corrected. Overall, taking into account the constraints 
imposed by a classification, the (information-theoretic) cost 
of correcting errors, and another cost term for specifying the 
classification, we compute the simplification provided by a 
particular classification. The prediction is that the greater 
this simplification, the lower the codelength of the similarity 
information of the items (when described with the 
classification) and the more psychologically intuitive the 
classification should be. 

The above approach has proved adequate for small 
datasets (Pothos & Chater, 2002). For larger datasets, 
additional assumptions are required. First, some 
subclustering may occur. Following Rosch and Mervis 
(1975), we considered the initial prediction of the simplicity 
model as a basic level categorization. Categories in this 



basic level categorization can be broken down into 
subordinates, by considering the items in each cluster as a 
new dataset and examining whether their classification 
affords additional simplification. This subclustering may 
corroborate or compete with the final (see later) 
classification. Second, for stimuli composed of more than 
one dimensions, classification may proceed on the basis of 
one dimension or both. The simplicity model has no 
parameters for attentional weighting, therefore dimensional 
selection has to take place automatically. Dimensional 
selection depends on whether the classification along either 
dimension (classification(x) or classification(y); for 
simplicity, call these x and y) is more intuitive than 
classification on the basis of both dimensions (call this xy; 
Pothos & Close, in press). In the present study, participants 
were asked to produce a two dimensional classification (an 
xy one). Therefore, the final classification (i.e., the basic 
level classification plus any further subclustering) has to be 
an xy one; ‘final classification’ will denote the classification 
the simplicity model predicts for a dataset. This can be 
achieved in two ways. Participants (or the model) may 
produce an xy classification straightaway. Or participants 
may first produce an x or a y classification, and then 
produce an xy one, by subclustering (we assume this is the 
only way in which subclustering can affect the form of the 
final classification).  

In sum, in describing the results with the simplicity 
model, an assumption is that the final classification is xy, 
i.e., most participants will look for an xy classification. 
However, not all participants will produce the optimal xy 
classification. Why would they not do this? Because there 
might be competition from salient subclusters along either x 
or y. A subclustering is considered to compete with the final 
classification if it occurs either along x or y, or if it is in xy 
but it is susceptible to noise. Susceptibility to noise means 
that by introducing a little bit of noise in the similarity 
structure of the items the classification changes. This is 
rarely the case with a basic level categorization, i.e., such 
classifications are typically very stable against noise. 
However, when subclustering a cluster, introducing a little 
bit of noise (not more than 10% in psychological space 
positions), often leads to alternative classifications, if the 
items in the cluster are close to each other. When a 
(sub)clustering is susceptible to noise, we consider it as 
competing with the final classification.  

In sum, subclustering and noise may lead to competition, 
which increases classification variability. A competition 
term is computed as the best codelength of the competing 
subclusters. Finally, competition may also arise if there is 

more than one salient xy final categorization (this only 
happens in the 5202 dataset below). 

Simplicity model predictions are specified as a 
percentage. We consider the codelength for the similarity 
structure of the items, without any clusters. Since we have 
16 items in each dataset, this is 7140 bits (in each case). 
Note that this codelength does not take into account any 
regularity in the similarity structure of the items at all. We 
then consider the final codelength for a particular 
classification; this final codelength would take into account 
any non-competing subclustering. In other words, this is the 
codelength of the similarity structure of the items, when 
similarity information is encoded using categories. For 
example, in the case of the dataset labeled as 3585, the best 
possible classification is associated with a codelength of 
3585 bits. Therefore, the simplicity prediction for this 
dataset would be expressed as 3585/7140*100 or 50.2%, to 
reflect the fact that only about 50% of the original 
codelength is required for describing the similarity structure 
of the items of this dataset with categories, compared to the 
situation where no categories are used. The lower this 
percentage, the greater the simplification afforded by the 
classification, and the more intuitive the corresponding 
classification is considered. The qualification to this 
conclusion relates to the ‘competition’ term: competition 
terms are computed in a way analogous to the above, and 
they correspond to how intuitive ‘competing’ subclusters 
are. Accordingly, the lower the competition term, the more 
intuitive competing subclusters are, and the less frequently 
the optimal classification should be produced.  

Experimental investigation 

Materials 
We created nine datasets of 16 items each, reflecting a range 
of intuitions about unsupervised categorization (Figure 1). 
Each dataset is indexed by its codelength (with no 
subclustering or dimensional selection). Items were 
instantiated as spider-like images (Figure 2), so that length 
of ‘legs’ (after the joint) corresponded to the horizontal 
dimension in Figure 1 and length of body to the vertical 
dimension. By choosing such stimuli, both dimensions of 
physical variation were lengths, and so a Weber fraction in 
mapping the Figure 1 values to physical values could be 
safely assumed (8%%). In results not reported here, we 
collected similarity ratings and carried out multidimensional 
scaling to verify that our representational assumptions are 
valid (they are). Stimuli were printed individually and 
laminated.  
 

 
 

 
 



 
Figure 1: The nine datasets utilized in the present study. In parentheses is shown the number of times the most popular 

classification was produced. 
 

 
 

 
Figure 2: An example of the stimuli used. 

Participants and procedure 
Participants were 169 students at Swansea University, 
who took part for a small payment. They received each 
set of items in a pile. They were asked to spread the items 
in front of them, and classify the items in a way that 
seemed natural and intuitive, using as many groups as 
they wanted, but not more than necessary. The two 
dimensions of variation were described and presented as 
equally important. There was an alternative set of 
instructions, where the stimuli were described as spiders 
in the Amazon; this was a ‘general knowledge’ 
manipulation, which, however, had no effect. Participants 
indicated their classification by arranging the stimuli into 
piles. Each participant went through all nine datasets, in a 
random order. 

Results 
In an experiment of this sort there is clearly a wealth of 
data, more than 1500 participant responses. We focus on 
what we consider one of the key issues in unsupervised 
categorization, namely predicting category intuitiveness. 

Note that the majority of clustering/ categorization 
models would be successful in predicting the most 
popular solution in each dataset. However, the key 
empirical issue and modeling challenge is to appreciate 
why in some datasets there were as few as 84 distinct 
classifications, while in others 160.   

We suggest that category intuitiveness can be 
operationalized as classification variability, i.e., the 
number of distinct classifications produced for a set of 
items. If there are fewer distinct classifications, then the 
psychological intuitions about certain classifications 
being more obvious should be stronger. Alternatively, we 
can count the frequency of the most popular classification 
for a dataset. If the most popular classification has a high 
frequency, then it should be the case that this 
classification is considered more obvious. In our dataset, 
the two measures are equivalent (correlation: 0.99), 
therefore, we shall consider only the latter (of course, in 
general this may not be the case). Table 1 shows the 
empirical results and illustrates the complexity of research 
into unsupervised categorization. Even with datasets 
which were created to represent a simple two-category 
structure, there are over 100 unique classifications. 

 
Table 1: ‘Fr of most popular’ refers to the number of 

participants who produced the most popular classification, 
‘Distinct’ to the number of distinct classifications. 

Codelength/ competition values refer to the simplicity 
model fit.  

 
Dataset Fr. most 

popular/ 
distinct 

Codelength (%)/ 
competition (%) 



3585 31/ 124 50.2/ 66 
3569 33/ 116 50/ 62.4 
3585s 8/ 152 50.2/ 52.9 
4128 17/ 141 57.8/ 61 
4201 55/ 104 43.5/ 68.2 
4244 3/ 160 59.4/ 52.9 
5150 3/ 159 72/ 60.2 
5202 2/ 164 60.6/ 69.7 
5347 58/ 84 57/ 100 

 
SUSTAIN Results 
Following previous simulations of unsupervised sorting 
tasks with SUSTAIN (Gureckis & Love, 2002; Love, 
Medin, & Gureckis, 2004), the model was applied to the 
sorting task in a trial-by-trial fashion. In order to 
approximate the free-sorting task with SUSTAIN, we 
make the reasonable assumption that subjects consider 
each stimulus one at a time but that the order of item 
consideration is idiosyncratic. Accordingly, SUSTAIN 
was given 5 blocks of training, each block consisting of a 
different random ordering of all stimuli. Stimuli were 
represented to the model as coordinate pairs. Input values 
along each dimension were scaled between 0.0 and 1.0. 
Attention for both dimensions was set to an initial value 
of λ= 1.0. but during the learning phase SUSTAIN could 
adjust this value. Since subjects were encouraged to use 
both dimensions while sorting we assumed attention was 
equally allocated for both x and y (akin to the xy bias in 
the simplicity model). After the learning phase, we 
examined the structure of SUSTAIN’s clusters by probing 
which items the model assigned to the same clusters in 
memory (i.e., items that strongly activated the same 
cluster were considered to be psychologically grouped).  
   Figure 3 show the results of SUSTAIN’s basic 
predictions (scaled by multiplying probability of 
classification by 196). In order to account for the 
variability of responses by subjects, in the simulations 
reported here we assumed that τ parameter varied from 
person to person following a roughly normal distribution 
(mean and SD were treated as free parameters for each 
dataset). Remember that the τ parameter determines how 
dissimilar an item has to be from an existing cluster in 
order to warrant creating a new cluster in memory. All 
other free parameters in the model were recycled from a 
single global set of parameters used in previous studies. 
SUSTAIN provides a good account of the results (Figure 
3). For example, SUSTAIN (like simplicity) correctly 
predicts that dataset 4201 and 5347 should have the most 
agreement while also predicting little consistency in 
responding for problems 4244, 5150, and 5202. 
 
Simplicity Model Results  
We illustrate the simplicity model fit with the 3585 
dataset and highlight aspects of its account for the other 
datasets. Observing Figure 1 for item id numbers, the 
basic level categorization in xy is (0 1 2 3 4 5 6 7) (8 9 10 
11 12 13 14 15), with a codelength of 50.2%; the x, y 

basic level categorizations are the same, so we select as 
xy the basic level categorization (since it is assumed that 
participants are biased to produce xy classifications). 
Furthermore, since no further subclustering is possible in 
xy (subclusters have very poor codelength, 92.5%), the 
final, predicted, classification for this dataset is (0 1 2 3 4 
5 6 7) (8 9 10 11 12 13 14 15). With respect to 
competition for this solution, there are very good 
subclusters along x or y, each one of which is associated 
with a codelength of 66%; so, the competition term for 
this dataset is 66%. (recall, the competition value is the 
lowest codelength corresponding to any subclustering; 
these subclusters are competing, rather than part of the 
predicted classification, because we assume that the 
predicted classification is xy). So, even though in this 
case we have a very intuitive final classification 
(codelength of only 50.2%), there is a rather high 
competition value as well, suggesting there would be 
some noise.   

The simplicity model can account for the superiority of 
the 4201 and 5347 datasets because in both cases the 
basic level categorization is initially 1D. Therefore, xy 
subclustering provides additional simplification, rather 
than competition (recall, the final classification has to be 
xy). For the 5202 dataset the basic level categorization is 
also one dimensional and xy subclustering provides 
additional simplification; however, there is also an 
alternative, competing final xy classification with 
comparable codelength. Table 1 provides a list of 
codelengths and competition values for the datasets. A 
linear regression analysis with codelength and 
competition as the independent variables, and frequency 
of the most popular classification as the dependent 
variable, was significant (F(2, 6) = 14.5, p = .005, 
R2=.83); however, the correlation is not perfect, indicating 
that there is room for improvement in the simplicity 
approach. Also, the balance between competition and gain 
was governed by two (regression) parameters, but in the 
future it would be desirable to specify this balance 
automatically within the simplicity framework.  

  Discussion 
With 16 items there are well over 100,000 potential 
classifications. The immense size of this space, along with 
the fact that few constraints given to participants in our 
spontaneous classification task, suggests that idiosyncratic 
variation (assumptions about the stimuli, processing 
biases etc.) have plausibly played a significant role in 
determining the distribution of classifications. However, 
despite this variability, there were datasets for which 
more than 30% of participants agreed on which 
classification is the best and datasets for which no more 
than three participants agreed on an optimal 
 



 
Figure 3: The y-axis show the frequency of the most popular classification in different datasets. The frequencies correspond either to the 

observed participant results, or to the predictions of the computational models. 
 
classification. We consider this variability extremely 
interesting and an exciting, novel, and important challenge 
for models of unsupervised categorization.     
    In our preliminary analysis, we examined two models of 
unsupervised category construction that draw from 
somewhat different formalisms. While both SUSTAIN and 
the simplicity models have broad empirical support, neither 
has been tested against such an extensive range of 
unsupervised categorization data. The fact that both models 
provide a reasonable account of the classification behavior 
of human subjects in our task is encouraging and argues 
favorably for the relevance of simplicity and similarity as 
appropriate constraints in unsupervised categorization. 
Moreover, both models appear to have more difficulty over 
the same range of datasets (5347, 5150, 5202). It is possible 
that SUSTAIN and the simplicity model reflect different 
ways of computationally implementing (at the algorithmic 
and computational level respectively) simplicity/d similarity 
in unsupervised categorization? Much work remains before 
this potentially important conclusion can be confirmed.   
    With respect to the simplicity model, the roles of 
subclustering and stability against noise need be better 
integrated with the main foundation of the model. Likewise, 
in terms of SUSTAIN, more work is needed to understand 
the full distribution of preferred groupings. For example, in 
some cases, SUSTAIN correctly predicted the relative 
prevalence of the most popular solution generated by human 
participants, however in a few occasions the model showed 
a bias towards alternative groupings that participants did 
often not select.  
    In general, as has been the case in supervised 
categorization (e.g., Nosofsky, 2000), we hope that 
comparative studies like the present one will help guide the 
development of computational models in unsupervised 
categorization as well.  
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